CONTENTS

<table>
<thead>
<tr>
<th>General</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definitions</td>
<td>1</td>
</tr>
<tr>
<td>Section 23. General principles</td>
<td></td>
</tr>
<tr>
<td>Lesson 125. Elevation</td>
<td>2</td>
</tr>
<tr>
<td>126. Sighting and beaten zones</td>
<td>4</td>
</tr>
<tr>
<td>127. Range table and climatic influences</td>
<td>6</td>
</tr>
<tr>
<td>128. The combined sight rule</td>
<td>7</td>
</tr>
<tr>
<td>Section 24. Direct fire</td>
<td></td>
</tr>
<tr>
<td>Lesson 129. Fire orders—Direct</td>
<td>13</td>
</tr>
<tr>
<td>130. Methods of fire</td>
<td>14</td>
</tr>
<tr>
<td>131. Point targets</td>
<td>16</td>
</tr>
<tr>
<td>132. Targets with width having the same range to each end</td>
<td>17</td>
</tr>
<tr>
<td>133. Oblique targets having a different range to each end</td>
<td>19</td>
</tr>
<tr>
<td>134. Targets with depth and area targets</td>
<td>22</td>
</tr>
<tr>
<td>135. Moving targets</td>
<td>25</td>
</tr>
<tr>
<td>Section 25. Indirect fire</td>
<td></td>
</tr>
<tr>
<td>Lesson 136. Theory of indirect fire</td>
<td>28</td>
</tr>
<tr>
<td>137. Fire orders—Indirect</td>
<td>29</td>
</tr>
<tr>
<td>138. Paralleling. Gun Angle method</td>
<td>33</td>
</tr>
<tr>
<td>139. Paralleling. A—Distant aiming point and posts method. B—Distant aiming point and target method</td>
<td>35</td>
</tr>
<tr>
<td>140. Crest method</td>
<td>38</td>
</tr>
<tr>
<td>141. Obtaining elevation</td>
<td>40</td>
</tr>
<tr>
<td>142. Crest clearance</td>
<td>40</td>
</tr>
<tr>
<td>143. Distribution</td>
<td>42</td>
</tr>
<tr>
<td>Section 26. Night firing</td>
<td></td>
</tr>
<tr>
<td>Lesson 144. Reconnaissance by day</td>
<td>46</td>
</tr>
<tr>
<td>145. Relief of guns by night</td>
<td>47</td>
</tr>
<tr>
<td>146. When the gun position cannot be reached by day</td>
<td>49</td>
</tr>
<tr>
<td>Section 27. Map shooting</td>
<td></td>
</tr>
<tr>
<td>Lesson 147. Shooting from the map</td>
<td>50</td>
</tr>
<tr>
<td>Section 28. Fire direction and control charts</td>
<td>51</td>
</tr>
<tr>
<td>Lesson 148. Preparation of charts</td>
<td>54</td>
</tr>
<tr>
<td>149. Barrages</td>
<td>56</td>
</tr>
<tr>
<td>Section 29. Examples of indirect fire orders</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>62</td>
</tr>
</tbody>
</table>
SMALL ARMS TRAINING
Volume I, Pamphlet No. 7

.303-inch Machine Gun
Part III.—Fire Control

GENERAL

Small Arms Training, Volume I, Pamphlet No. 7, Part III, deals with the various methods of applying machine gun fire. It is written for officers and non-commissioned officers whose duty it will be to direct and control fire, but before studying it they should be thoroughly conversant with Small Arms Training, Volume I, Pamphlets No. 1, Section 2 (Theory of Small Arms Fire) and No. 2 (Application of Fire). A very elementary knowledge of mathematics will assist the reader in grasping the methods of fire control quickly.

DEFINITIONS

(See also Small Arms Training, Volume I, Pamphlet No. 7, Part II.)

Angle of distribution.—The angle between adjacent lines of fire opened up to divide a target wider than the gun frontage into equal parts, the flank guns being laid on the flanks of the target.

Angle of sight.—The angle contained between the line of sight and the horizontal plane. The angle is said to be positive (+) when the target is above the horizontal plane through the gun position (Figure 3), and negative (−) when the target is below it (Figure 4).

![Figure 3](positive_angle_of_sight.png)

![Figure 4](negative_angle_of_sight.png)

Great clearance angle.—The angle by which the axis of the barrel must be raised above the line of sight to the crest to ensure that all the bullets clear the crest.

Angle of Deviation from zero.—The actual deflection from the zero line to bring the gun on its correct position on the target.

Distribution.—The opening out of parallel lines of fire.
Flanking fire.—Fire applied from a flank across the front of a locality occupied by our own troops, or, if they are advancing, at an angle to their line of advance.

Fixed line.—A term denoting that measures have been taken for maintaining elevation and direction in darkness, smoke, etc., to ensure that fire will fall on a pre-arranged area of ground.

Line of fire.—The direction of the target from the gun.

Minimum clearance.—A term used to denote the minimum height of the centre bullet of the cone above the heads of our own troops for the latter to be safe.

Overhead fire.—Fire passing over the heads of our own troops.

Quadrant angle.—The angle which the axis of the barrel makes with the horizontal plane.

Safety angle for flanking fire.—The minimum lateral angle by which a line of fire must clear our own troops in order to ensure their safety.

Safety angle for overhead fire.—The minimum angle which must be included between the axis of the barrel and the line of sight to our own troops to ensure their safety under overhead fire.

Tangent angle.—The angle which the axis of the barrel makes with the line of sight.

Ground angle.—The angle between the line of sight to our own troops and the line of sight to the target when overhead fire is being used.

SECTION 23.—GENERAL PRINCIPLES

1. Introduction.—The considerations which govern the method of applying machine gun fire are:

 (a) The best fire effect on the whole target.
 (b) Economy of time and ammunition.
 (c) Simplicity and speed.
 (d) Safety of our own troops.

 The factor of surprise as applied to fire cannot be over-estimated.

 Fire control orders must be framed in such a way that all these requirements are met.

 The system of fire control laid down in this pamphlet is worked out on the above basis and should be adhered to. Occasionally the situation may not permit the rules given to be carried out in their entirety. Common sense, and a knowledge of how the rules are arrived at, will enable the best fire effect to be obtained in these circumstances.

2. Basis of fire control rules.—Fire effect is desirable as soon as fire is opened or immediately after. Observation of machine gun fire is only possible on certain types of ground, and, particularly in European countries, can never be relied upon. The opportunity of correcting fire on to the target by observation of strike will therefore seldom occur.

 There is no quick reliable means of determining with precise accuracy the effect of climatic conditions. Errors, both of direction and elevation, must therefore be expected. The procedure is to define round the target an area allowing for reasonable errors of direction and elevation, and to apply fire over the whole of this area.

 The rules of fire control contained in the following sections are based on the assumption that insufficient observation of strike will be obtained to deduce the exact position of the beaten zones. Every endeavour, however, must be made to pick up the strike of the bullets and to correct fire accordingly. Whenever sufficient observation of fire for this purpose is possible the fire control rules should not be adhered to.

3. Direct or indirect fire.—The normal method of engaging a target will be by direct fire, i.e., by laying on the target over the sights. The main asset of direct fire is its extreme flexibility, which enables a succession of targets over a wide arc to be engaged quickly.

 The machine gun is capable of firing indirect, i.e., the gun is laid on an aiming mark, with the elevation required to hit the target obtained and placed on the gun by instruments. Indirect fire is employed when it is impossible or inadvisable to occupy a direct fire position, or when shooting from a map.

 The main technical advantage of indirect fire is that the necessity for indicating the target to a number of individuals is removed. The laying of the gun is mechanical, and its accuracy is not affected by light or distance.

 The disadvantages are the necessity for additional measurements and calculations, and the difficulties of crest clearance owing to the flat trajectory.

 Conditions which obstruct the field of view (e.g., bad visibility, fog, smoke screens, etc.) often arise after a position is occupied. Consequently, when direct fire is to be employed, certain arrangements for indirect fire should be made as soon as time permits. The details of these arrangements can be found in section drill—direct fire (Sec. 17).

 The principles and details of fire control set down in this pamphlet apply both to direct and indirect fire. As the methods of fire, and details of fire discipline, are in many instances not the same, direct and indirect fire are treated separately in the remainder of this part.

4. Safety Precautions

 On all occasions when the gun and dummy cartridges are used for instructional purposes, the instructor will carry out the following safety precautions:

 (a) Inspect all locks to ensure that the striker does not protrude through the firing pin hole.
 (b) Inspect all ammunition to ensure that all cartridges are dummy.

 Note 1. When instruction is being given in mechanical subjects, "drill purpose" stores, if available, will always be used.

 2. When service stores are used sub-para. (a) above does not apply.
LESSON 125.—ELEVATION

Instructor's Notes

Stoves:—Gun and tripod, dial sight, range table, blackboard.

First ensure that the class understand the forces which act upon the bullet (Small Arms Training, Volume 1, Pamphlet No. 1, Section 2).

Explain the tangent angle and demonstrate how it is applied to the gun by the tangent sight—show how whenever the gun is laid (direct or indirect) the two components of elevation are the tangent angle and the angle of sight.

Demonstrate elevation as applied to the gun with the dial sight (indirect fire), and finally explain the quadrant angle.

1. When firing direct, elevation is given to the machine gun by setting the tangent sight at the graduation corresponding to the range to the target and directing the line of sight on to the point of aim. This process sets the axis of the barrel at an angle above the line of sight (Figure 5). This is the angle of tangent elevation (tangent angle) for the range at which the tangent sight is set. Tangent angles for all ranges have been determined and are laid down in the Range Table.

2. When firing indirect elevation or depression is placed on the gun by means of the dial sight in two components:
 (a) The range (tangent angle) on the range drum.
 (b) The angle of sight to the target on the angle of sight drum.

It may sometimes, however, be convenient to the fire controller to be able to express the angle of elevation given to a gun in relation to the horizontal. This angle is known as the quadrant angle, and is the angle between the axis of the barrel and the horizontal (Figure 6).

The quadrant angle is calculated from the formula:

\[\text{Quadrant angle} = \text{tangent angle} \pm \text{angle of sight}. \]

(For angle of sight, see Definitions, page 1.)

The following diagrams show how the formula is arrived at:

- \(Q \) = quadrant angle.
- \(T \) = tangent angle.
- \(S \) = angle of sight.

Target above the gun (Figure 7).

Target level with gun (Figure 8).

Target below gun (Figure 9).

Target far below gun (Figure 10).

* Except where the line of sight is abnormally steep, i.e., in mountainous countries. This point is explained in Lesson 126.
LESSON 126.—SIGHTING AND BEATEN ZONES

Instructor’s Notes

Stoves: Gun and tripod, range table, blackboard.

Method of instruction.

Explain the normal (i.e., approximately horizontal line of sight) and the abnormal in conjunction with the chart in the Range Table, 1939, page 17, and para. 2 below.

Explain the beaten zone and how it is affected by ground (Range Table, page 14).

EXPLANATION

1. Sighting of machine guns.—In common with other small arms, a mechanical graduation for each range has been adopted, and guns are carefully tested for accuracy before issue. In course of time wear to mountings and barrels, and irregularities in packing, may require individual gun corrections to be made when setting the tangent sight for a particular range.

On all occasions when the gun is firing ball ammunition and it is possible to determine the range with accuracy, the gun range should be noted, if possible corrected for the atmospheric conditions of the day, and recorded.

2. Effect of not having a horizontal line of sight.—The .303-inch Vickers machine gun is sighted for a horizontal line of sight. That is to say, if the tangent sight is set at a certain graduation and the gun laid with the normal line of sight, a single shot will, in theory, strike the horizontal plane at a distance away from the gun corresponding to the graduation at which the sight is set.

As the angle of sight increases or decreases, less tangent elevation is required to cause the bullet to travel the same distance, because the pull of gravity is not at right angles to lines of sight which are not horizontal.

This point may, perhaps, be more easily understood by considering the example of firing vertically upwards or vertically downwards. Here no tangent elevation is required on the gun, as the pull of gravity acts directly along the line of sight.

For angles of sight of less than 10 degrees elevation or depression the reduction in tangent elevation required is negligible. In mountainous countries, however, it will be necessary to set the sight at a corrected range.

A chart from which the corrected range for abnormal angles of sight can be obtained is given in the Range Table, 1939, page 17.

3. Beaten zones.—The beaten zone of the machine gun has similar characteristics to that obtained in collective rifle fire. The fixed mounting gives greater accuracy and closer grouping. The dimensions of the beaten zones for various ranges have been obtained by experiment, and are laid down in the range table. The rules contained in this pamphlet are based on these dimensions, which vary little for different guns and mountings, and hence can be taken as constant for each range.

As in collective rifle fire, the length of the beaten zone decreases as the range increases. Beyond 2,700 yards the machine gun beaten zone again begins to increase. This is due to minor differences in the velocity of individual bullets.

Its breadth increases up to extreme range.

The fact that it is narrow in comparison to its length calls for great accuracy of direction, and renders the gun peculiarly suited to engage, from a flank, targets with width and little depth.

If, however, the target has depth it may be advisable to engage it by frontal fire, in order that the length of the beaten zone may be employed to cover the depth of the target as opposed to its width.

The effect of ground on the beaten zone of the machine gun is in general as shown in Pamphlet No. 1 for the rifle.

In addition, it should be remembered that plunging fire from a commanding position on to level ground (Figure 11) will produce a reduced beaten zone.

Figure 11

The table given in the range table has been compiled to show the length of the beaten zone as reduced or increased according to the slope of the ground on which it falls.

It will be seen from the range table (pages 2 to 7, column 23) that as the range increases so does the angle of descent of the bullet; consequently each bullet in its descent endangers a smaller area of ground at long ranges than at short ranges.

It follows that as the range, the error in determining the range (see Lesson 128), the area of the beaten zone, and the angle of descent of the bullet increase, the destructive or neutralizing effect of the fire of each machine gun becomes greatly reduced. To compensate for this reduction, a larger number of machine guns should be employed on neutralizing tasks at long ranges.

The greatest width of front which can be effectively engaged at any range is 50 yards per gun.

The length of bursts of machine guns will normally be 25 rounds at all ranges.

LESSON 127.—RANGE TABLE AND CLIMATIC INFLUENCES

Instructor’s Notes

Stoves: Range table, blackboard.

Those parts of the range table which are described in this lesson should be explained, and simple exercises in them should be set, until the class is thoroughly familiar with them.

1. Pages 2 to 7.

Columns 1 and 26 give the ranges in 50’s from 50 to 4,500 yards.

Column 2 gives the tangent angles.

Column 3 gives the lift for 50 yards, i.e., the angular amount by which each elevation has to be increased so as to add 50 yards to the range.

Columns 5 to 13. (See para. 8 (c), below.)

Column 14 gives the number of elevations required by the combined sight rule for the different methods of determining the range.

Column 19 and 20 deal with the height of the cone.

Column 20 gives its total height, and column 19 gives the angle subtended at the gun by half its height.

Column 21 gives the width and length of the beaten zone.

The figures given are for 90 per cent. of the total shots fired. The stray shots, which produce little fire effect, are therefore not included. The length of beaten zone is that along the line of sight.

Vickers MG Collection & Research Association - www.vickersmg.org.uk
Column 22 gives the time of flight at each range.
Column 23 gives the slope of descent of the bullets compared with the line of sight. This figure enables a fire controller to calculate whether his fire can be brought to bear on reverse slopes.
Columns 24 and 25. (See para. 8 (b), below.)
Columns 4 and 15 to 18 deal with crest clearance and safety, which will be learnt later.

2. Pages 14 and 15 give the foreshortening effect of a forward slope on the length of the beaten zone, and the lengthening effect of a reverse slope.
The gaps in the bottom left-hand corner of the table are caused by the fact that, at those figures, the reverse slope is steeper than the angle of descent of the bullet, with the result that such slopes are "dead ground" when engaged at those ranges.

3. Page 16 gives the formula to determine the angle of sight and the allowance for moving targets (Lesson 135).

4. Page 17. The machine gun is sighted for a horizontal angle of sight, and in this sighting is sufficiently accurate for all angles of sight between plus 10 degrees and minus 10 degrees.
If the angle of sight exceeds 10 degrees, allowance must be made in accordance with the chart. If it be imagined that a target is being engaged immediately above or below the gun, i.e., at an angle of sight of 90 degrees, clearly no tangent angle is required on the sight, no matter what the range. At steep angles of sight, therefore, less elevation is required than for a horizontal angle of sight. See example at the foot of the chart.

5. Pages 18 and 19. This table caters for the possible situation in battle where the supply of Mark 8 ammunition has temporarily failed, but where Mark 7 is obtainable for filling into the belts, either from a neighbouring infantry unit, or from the pouches of the machine gunners.
Owing to the differences in trajectory of the two kinds of ammunition, the reading on the tangent sight for Mark 8 is not correct for Mark 7. In column 2 is given the reading to be put on the sights when engaging targets at ranges shown in column 1.

6. Graph for calculating quadrant elevation and clearances (The fia graph).
This graph is formed by plotting the path of the centre bullet for quadrant angles, increasing by 15 minute increments, from depression 2 degrees to elevation 17 degrees 30 minutes.
The red horizontal line marked "O" represents the horizontal line through the gun position. The other red horizontal lines give heights in hundreds of metres above or below the gun position. The intermediate black dotted lines give heights in tens of metres. The equivalent to heights in feet are given down the right edge of the graph.
The vertical lines give the range from the target in hundred yard intervals, the multiples of 1,000 being in red.
The chief use of the graph is to determine the QA for targets at any height above or below the gun.

For example:—
Range to target ...
Height of target above gun ...

Find the point where the horizontal line for plus 70 metres cuts the vertical line for 1,900 yards.
Note the curve which passes through this point. It is the curve for elevation 5 degrees 15 minutes. (The curves for degrees are in red, those for 30 minutes are in thick black, those for 15 minutes and 45 minutes in thin black.)
Elevation 5 degrees 15 minutes is therefore the QA required.

The graph can also be used in connection with crest clearance and the overhead safety of our own troops where the distance of the crest or own troops above or below the gun is found as a height, and not as an angle of sight (e.g., map shoot). The use of the graph for these purposes is dealt with under the lessons concerned.

7. VI Graph. The commonest uses of the VI graph are:—
(a) Knowing the range, to determine the distance or height subtended by a certain angle.
(b) Knowing the range, to determine the angle subtended by a certain distance or height.
In Figure 12, if G is the gun, and GA the range, then AB is the distance subtended by AGB at the range GA, and A1B1 is the distance subtended by the angle AGB at the range GA1
Similarly, the angle AGB is said to subtend AB and A1B1 at the ranges GA and GA1 respectively.

Example:
Angle AGB equals 4 degs. 10 mins.
Range GA equals 3,300 yards.
What is the length of AB?
Find the point where the horizontal line for 3,300 yards meets the diagonal line for 4 degs. 10 mins.

Follow the vertical line through this point down to the scale at the bottom of the graph, and the figure gives the length of AB. It is 240 yards.

8. Climatic Influences
(a) The following are the normal conditions for the sighting of small arms:—
 Barometric pressure, 30 inches. (Mean sea level.)
 Temperature, 60 degrees Fahrenheit.
 Still air.
 A horizontal line of sight.
(b) Barometer and temperature. If the barometer falls below 30 inches, less elevation than is normally required for the distance will be necessary, as the atmosphere, being less dense, offers less resistance to the bullet. It should be noted that the barometer will fall one inch for every 1,000 feet above mean sea level. If the barometer rises above 30 inches, more elevation is required, as the air is denser.
 The bullet meets with less resistance in hot weather, when the temperature is high and the air less dense; and greater resistance in cold weather, when the temperature is low. In the former case, therefore, less elevation is required, and in the latter more.
Allowances for one inch rise or fall of barometer and 10 degrees rise or fall in temperature will be found opposite each range in columns 24 and 25 of pages 2 to 7 of the range table. It should be noted that for a fall in barometer, and a rise in temperature, the allowance to be made is subtracted, and vice versa.

(c) Wind. Winds blowing directly along the line of fire from front to rear will affect the elevation, but here again unless the wind is very strong and the range long, the allowance required is small.

Winds blowing directly at right angles to the line of fire will affect direction, and have considerable effect on the bullet, particularly at long ranges.

Winds blowing from a direction oblique to the line of fire will affect both direction and elevation.

Although where speed is essential it may be necessary to estimate in taps the lateral allowance to be made for a side wind, recourse should be had to the wind table in the range table when time permits.

Having estimated the strength and direction of the wind, the allowance required may be obtained from the range table on pages 2 to 7, columns 5 to 13.

An explanation of the use of the wind table is on page 8 of the range table.

9. The meteor telegram. In order to make accurate allowances for climatic influences, meteor telegrams are published periodically in war. They are primarily intended for artillery units, but it may be possible for machine gun units to arrange to be sent copies, or to obtain the necessary information from neighbouring artillery units. An example with explanatory notes is shown:

<table>
<thead>
<tr>
<th>FROM</th>
<th>Originator's Number</th>
<th>Date</th>
<th>In reply to Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bar 3250</td>
<td>0543</td>
<td>18139</td>
<td>1041</td>
</tr>
<tr>
<td>1538</td>
<td>21168</td>
<td>26398</td>
<td>28355</td>
</tr>
<tr>
<td>3054</td>
<td>24190</td>
<td>5132</td>
<td>35159</td>
</tr>
</tbody>
</table>

(a) "Bar 3250" is the height of the barometer in inches, to two places of decimals, at mean sea-level (M.S.L.). For the purpose of applying corrections this figure must be corrected for the height of the gun position. The rules for applying corrections are: For every metre rise deduct 0.001 inch or for every foot rise deduct 0.001 inch, from the mean sea-level reading.

(b) The first two figures in each subsequent four-figure group are the time of flight.

(c) The last two figures in each subsequent four-figure group give the air temperature in degrees Fahrenheit.

(d) Each five-figure group relates to the preceding group of four figures.

(e) The first two figures in each five-figure group give the velocity of the equivalent constant wind in feet per second. To convert feet per second into miles per hour, multiply by two and divide by three. Thus 21 feet per second equals 21 multiplied by 2 divided by 3 equals 14 mph.

(f) The last three figures in each five-figure group give the true bearing from which the wind is blowing. This true bearing must be compared with the true bearing of the line of fire and converted to clock ray before the wind table is used.

(g) The groups always consist of the number of figures shown, 0's being prefixed if necessary. Thus 07004 would signify a 7 is wind from a bearing of 4 degrees.
Therefore extra elevation is required to allow for the temperature.
19 x 2.2 or, say, plus 42 minutes.
Allowance to be made for temperature : Plus 42 minutes.

(iii) Wind. (See Figure 13.)
From telegram, for a 15 second time of flight wind is 21 feet per second from a true bearing of 166 degrees.
From diagram, angle between line of fire and wind is : 286° - 166° = 120 degrees.
To convert to clock ray, consider each hour to consist of 30 degrees.
Regard line of fire as 12 o'clock. Therefore this wind is coming from 8 o'clock.

Speed : 21 feet per second = 21 x 2.2 = 46 mph.
A 10 mph wind at 3850 from 8 o'clock requires the following corrections :
For line : Left 41 minutes. Therefore a 14 mph wind requires x 14 = 57 minutes

For range : Minus 15 minutes. Therefore a 14 mph wind
15 requires x 14 = 21 minutes

Corrections for fire order :
Range 3850. Tangent angle = 12 degs. 1 min.
Barometer Plus = 32 mins.
Temperature Plus = 42 mins.
Wind Subtract = 12 degs. 15 mins.

Therefore ELEVATION 12 degs. 55 mins. (to nearest 5 mins.)
LINE LEFT 1 deg. (57 mins. to nearest 10 mins.).

LESSON 128.—THE COMBINED SIGHT RULE

Instructor's Notes

Stores as for Lesson 127.

Explain :—
1. Errors in elevation may be caused by :—
(a) Inaccuracies in determining the range.
(b) Incorrect allowances for climatic variations.

2. The range may be determined by :—
(a) Range-finding instrument—up to 2,800 yards.
(b) Measurements on a map of not less scale than 1/50,000. For ranges over 2,500 yards, this method is likely to be the most accurate, provided that the map is in good condition and the gun position and target can be accurately located.
(c) Key-ranging.—That is by estimating from ranges taken by either of the above methods. This method is reasonably accurate up to 2,000 yards, but beyond that is of little practical value.

3. For fire effect to be obtained on a point target, it is necessary to ensure that the beaten zones cover all points at which that target may be, having regard to the error in determining the range.

For example, assuming the error in determining the range to be 10 per cent., and the range to have been given as 700 yards, the target may lie anywhere on the line of sight between 630 and 770 yards. At 700 yards, the length of the beaten zone along the line of sight is 195 yards, and it therefore extends from 602 yards to 797 yards.
Thus, in this example, it more than covers all points where the target may be.
In this example, it would be sufficient to fire with the gun or guns at one elevation (700 yards) only, but at the longer ranges, when errors in determining the range increase, and (up to 2,650) beaten zones decrease, it becomes necessary to fire on more than one elevation.
A "combined sight" table is therefore necessary to ensure that the fire controllers know how many elevations are needed at different ranges. This table is included in the range tables, but for ranges up to 2,000 yards it is simple and should be learnt by heart:—

COMBINED SIGHT RULE

<table>
<thead>
<tr>
<th>RANGE</th>
<th>No. of elevations required</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 900 yards</td>
<td>1</td>
</tr>
<tr>
<td>900 to 1,400 yards</td>
<td>2</td>
</tr>
<tr>
<td>1,400 to 2,000 yards</td>
<td>3</td>
</tr>
<tr>
<td>2,000 to 2,500 yards</td>
<td>4</td>
</tr>
<tr>
<td>2,500 to 3,000 yards</td>
<td>5</td>
</tr>
<tr>
<td>3,000 to 3,500 yards</td>
<td>6</td>
</tr>
<tr>
<td>3,500 to 4,000 yards</td>
<td>7</td>
</tr>
<tr>
<td>4,000 to 4,500 yards</td>
<td>8</td>
</tr>
</tbody>
</table>

4. Fire will be opened with all guns at the range obtained, plus or minus any allowance for head or rear winds. This procedure ensures that the best use is made of any observation of strike of the bullets.
If three elevations are required by the combined sight rule, they will be the opening elevation, and the elevations 50 yards less and 50 yards more.
If five elevations are required, they will include also the ranges 100 yards above and 100 yards below the opening range.

5. If good observation of fire is obtained, the combined sight rule will not be applied.

SECTION 24. DIRECT FIRE.

1. The direct fire unit is the section, because :
(a) Two guns are required to give the necessary volume at the most usual machine gun ranges.
(b) At longer ranges, two guns are required to ensure hitting the target without undue delay.
(c) In event of stoppage of one gun, sustained fire can be maintained by the other.
(d) It can easily be concealed and is not too vulnerable.

2. The requirements of fire control necessitate the two guns being under the command of a fire controller who is supplied with a range-taker to enable him to determine the range and observe the fire.

3. In order to avoid casualties the two guns of a section in action should be as far apart as possible, provided that the section commander is able to control both guns by voice.

4. With reference to para. 1 above, at distances beyond 2,000 yards the volume of fire produced by a section cannot always be relied on to give results proportionate to the expenditure of ammunition, and the fire of two or more sections may have to be directed on the same target from their respective positions.
LESSON 129.—FIRE ORDERS—DIRECT

Instructor's Notes.

Stores: Two guns and tripods, director, range tables, slide rules, landscape target, blackboard.

After an initial lecture with blackboard and landscape target, this lesson should, whenever possible, be carried out of doors.

1. Explain that the following is the procedure for engaging a target by a direct fire unit.

(a) The fire controller, by means of a fire order, gives an elevation and indicates a point of aim on the target for each gun.

(b) Each firer sets his tangent sight at the elevation ordered, and by tapping the gun, and by use of the elevating handwheel, directs the line of sight on to the point indicated for the gun. Thus the gun is laid initially for both elevation and direction.

2. Fire orders are given in a sequence, laid down in para. 3 below, and must not be departed from.

Rigid adherence to the sequence will ensure that errors and omissions are detected immediately, and, further, that the personnel, knowing what to expect, will act more quickly.

The orders must be given loudly and clearly, the fire controller facing towards the guns.

He must make up his mind what is the correct order to give before embarking on it. Long and unnecessary pauses, during which he is coming to a decision as to the next part of the order, can result only in inaccuracies and slovenly drill.

The recipients must have time to act on one portion of the order before another is given.

Reference points and degrees should be used only when they are necessary in order to indicate the target clearly. The best fire order is that which gets bullets on to the target in the shortest possible time.

3. The sequence of a direct fire order is:

(a) Designation.

(b) Range or ranges (including wind allowance, if necessary).

(c) Indication of the target.

(d) Method of fire.

(e) Side wind allowance.

(f) Rate of fire (if required).

(g) Order to fire.

When giving out the order, pauses should be made as under, until it is seen that the gun numbers are ready for the next part of the order.

After the range ... To allow time to set the sights.
At various stages during the indication Time must be given for points to be recognized. When degree methods of indication are used, a pause must be made to enable the angles to be measured.
After method of fire ... To enable the guns to be laid.
After wind, if any ... To allow of picking up an aiming mark.

4. Range or ranges

(a) Ranges, when ordered to the guns, will be given to the nearest fifty yards, and according to the following examples:

- 700—Seven hundred.
- 1,000—One thousand.
- 1,400—One four hundred.
- 1,550—One five fifty.
- 2,000—Two thousand.
- 2,300—Two three hundred.
- 2,350—Two three fifty.

(b) For the first target the section commander will usually obtain the range from the range-taker, but where the situation demands it, he should not hesitate to estimate the range. For subsequent targets, to save time, ranges are taken, or estimated, from the range card.

(c) If one range is ordered to the two guns the range will be preceded by the word "all," e.g., "All—one two hundred.

If two elevations are necessary, they will be given in the form:

"No. 1—One six fifty.
No. 2—One seven fifty."

(d) If the wind is sufficiently high to warrant a correction for elevation, the allowance required will be calculated in yards (Lesson 127). The range will be corrected before being given out.

5. Indication. The section commander will indicate the target as laid down in Lesson 70. It should be noted that when switching from one target to another the last target is often the best aid in indication.

6. Method of fire. (a) Order "right and left ... tape."

Both guns are laid on the centre of the target.
No. 1 gun tape to the left first and No. 2 to the right.

(b) Order "traversing." No. 1 is laid on the right end and No. 2 on the left end of the target.

Notes. In engaging an oblique target, this order to traverse will be preceded by "No. 1 right half—No. 2 left half."

On completion of the "method of fire" order the section commander will order "Lay."

7. Side wind. The section commander will either estimate the side wind required or calculate it to the nearest tape (Lesson 127). It will be ordered to the guns in the following form:

"Wind—right (or left) ... tapes."

Nos. 1 tap their guns across by the number of tapes ordered, pick up an aiming mark, and inform Nos. 2 when ready.

If the allowance required is 1 degree or more, it should be ordered in degrees. Nos. 1 by means of a hand angle pick up an aiming mark.

If no correction is necessary, this heading is omitted from the order.

8. Rates of fire. If no order is given, normal is implied.

If it is desired to fire "Rapid" the order will be given after the allowance for wind, if any.

9. The order to fire. This will normally be given by the fire controller ordering "Fire." If more convenient, he may signal "Fire."

(See Sec. 13, Signals.)

Attention is called to Lesson 126—Length of Bursts.

10. The following orders may be given during a shoot:

(a) "Stop." This order is normally given by signal, the arm being waved horizontally to and fro.

(b) Ranging corrections.
(i) Direction. The section commander converts the necessary deflection into taps which he orders to one or both guns as required. No. 1 pick up an aiming mark in the new line.

Examples:
- "All—Up two taps."
- "All—Down two taps."

(ii) Elevation. The section commander decides on the correction, and either gives out a new range or orders "Up" or "Down" by the amount required.

Examples:
- "All—One hundred."
- "All—Up two hundred."
- "All—Up one hundred."
- "All—Down fifty."

In applying the combined sight rule to cases where the two guns of a section are to have different elevations, the lower elevations will be given to No. 1 gun.

(c) "Go on." This order may be given verbally or by making the signal to fire.

(d) When engaging a target with width or an oblique target which is likely to become obscured, the fire controller will order Nos. 1 to lay their guns a quarter of the way in from each end of the target. Each gun will then engage half the width of the target by tapping right and left.

11. Practise squad in open country.

LESSON 130.—METHODS OF FIRE.

Instructor's Notes

Stores: Blackboard, landscape target.
The subject matter will be given in the form of a lecture.

1. Explain that types of targets which machine guns will be required to engage are classified as:
(a) Point targets. (Lesson 131.)
(b) Targets with width having the same range to each end. (Lesson 132.)
(c) Oblique targets having a different range to each end. (Lesson 133.)
(d) Targets with depth. (Lesson 134.)
(e) Area targets. (Lesson 134.)
(f) Moving targets. (Lesson 135.)

2. The firer is taught the required strength of tap to displace the line of sight by 15 minutes, this being the amount which it is calculated will cause successive beaten zones to overlap slightly. This tap is called the "regulation 15-minute tap."

3. Errors in direction may be caused by:

(a) Wrong estimation of wind.
(b) Slight inaccuracies of aim, wear in the mounting, etc.

As these errors may act either way, it will be necessary to engage an additional width on either side of the target. Lateral errors will not normally be great, but the beaten zone is narrow and so does not give much help in overcoming them.

The error increases in proportion to the range, and therefore a greater width will require to be engaged at long ranges than at short.

LESSON 131.—POINT TARGETS

Instructor's Notes

Stores: Blackboard, landscape target, two guns, tripods, director, range-tables and slide rules, field glasses, spotlight apparatus, if available.

1. Explain that errors in direction are overcome by the application of the following rule:
- Up to 800 yards inclusive.—The error should be covered by the width of the beaten zone.
- Between 850 and 1,400 yards.—One tap right and left.
- Above 1,400 yards.—Two taps right and left.

2. Illustrate a fire unit engaging a point target at a range of 1,500 yards obtained by range-finder, requiring two taps right and left. (Figure 14.)

![Figure 14.—Tapping right and left.](image)

3. Explain and show examples that if the point of aim is indefinite, an extra tap right and left must be given.

4. Explain that in engaging point targets, the centre of the target will be used as the point of aim for both guns. Targets with a little width will also be engaged in this way, the number of taps required according to rule above being increased to cover the extra width. To calculate the number of taps required for width: Measure the angular width of the target, divide by two, and take to the nearest 15 minutes.

- e.g., Target 20' wide.
- Divide by 2 = 10'.
- Take to the nearest 15' = one tap right and left.

As a guide, if the number of taps right and left to be given exceeds three, the target will be treated as a target with width.

5. With the aid of the "Apparatus, Weapon Training, Spotlight, Mark 2," practise the engagement of point targets.

6. Examples of fire orders to engage point targets.
The following reference points have been selected on the landscape as shown in Plate 26.

i. Haystacks (RP1)—left bottom corner known as Stack.
ii. Two poplars (RP2)—left poplar known as Poplar.
Target "A." Points target 750 yards.
- All 750.
- Right of arc—pond—nearside—large tree.
- Lay.
- Rapid fire.

Target "B." Point target 1,600 yards (range-finder).
- All 1,600.
- Poplar—right 3 o'clock 3 degrees—bush.
- Right and left 2 taps.
- Lay.
- Wind—right—1 tap.
- Rapid fire.
- Stop.
- No. 1 down 50, No. 2 up 50.
- Go on.

Target "C." Point target 1,600 yards estimated.
- All 1,600.
- Stack—right 2 o'clock 2 degrees—corner of field.
- Right and left 2 taps.
- Lay.
- Fire.
- Stop.
- No. 1 down 50.
- No. 2 up 50.
- Go on.

Target "D." Point target 1,150 yards (range-finder) 45° wide.
- All 1,150.
- Right of arc—4 large trees.
- Right and left—3 taps.
- Lay.
- Wind—left 1 tap.
- Rapid fire.

Lesson 132.—Targets with Width Having the Same Range to Each End.

Instructor's Notes.

- Stores as for Lesson 131.

1. Explain that errors in direction are overcome by the firer always traversing outside the flanks by one tap.

2. Explain that in engaging targets with width, No. 1 gun will be laid on the right end, No. 2 on the left end. Each gun will engage the whole target. The engagement of a target in this way is known as traversing. Should the angle of sight vary along the target, Nos. 1 will maintain the correct line of sight on to the target by elevating or depressing the gun after each tap.
The maximum width of target which can be engaged effectively by a section is approximately 100 yards.

3. Illustrate a fire unit engaging a target about 100 yards wide. (Figure 15.)

 (a) X ... X are the original points of aim.

 (b) The dotted beaten zones on the flanks of the target represent one tap outside. (See para. 1, preceding.)

4. With the aid of the spotlight apparatus, practise the engagement of targets with width.

5. Examples of fire orders to engage targets with width.

 The following reference points have been selected on the landscape, as shown in Plate 27.

 i. Haystacks (RP1) left bottom corner known as Stack.

 ii. Two poplars (RP2) left poplar known as Poplar.

 Reference to Plate 27

Target "F." Target with width 800 yards (estimated).

 All 800.
 Poplar—6 o'clock right end of house—left limit.
 Right 3 o'clock 2 degrees—bush—right limit.
 Traversing.
 Lay.
 Rapid fire.

Target "E." Target with width, range 1,300 yards (estimated).

 All 1,300.
 Poplar—right 4 o'clock 4 degrees—bush—from bush to left 9 o'clock—where hedgerow disappears behind large trees.
 Traversing.
 Lay.
 Wind right 1 tap.
 Fire.

 Stop.
 No. 1 down 50.
 No. 2 up 50.
 Go on.
LESSON 133.—OBLIQUE TARGETS HAVING A DIFFERENT RANGE TO EACH END

Instructor's Notes.

Stores as for Lesson 132.

1. **Explain**, as in the case of targets with width, that errors in direction are overcome by the firer always traversing outside the flanks by one tap.

2. **Explain**. In the case of oblique targets with a different range to each end, each gun will traverse its own half of the target: No. 1 gun the right half, No. 2 gun the left half.

The Nos. 1 will maintain the correct line of sight by elevating or depressing the gun after each tap.

3. **Illustrate** a fire unit engaging a target of angular width of 4 degrees. (Figure 16.)

Ranges by range-finder:
- To right end, 1,300.
- To left end, 1,200.

Notes.—(1) × ... × are the original points of aim. No. 1 with 1,300 yards, No. 2 with 1,200 yards on their sights.

(2) The dotted beaten zones on the flanks of each gun's traverse represent one tap outside that traverse. (See Lesson 132.)

(3) The target presents a frontage of approximately 90 yards as represented by the distance AC. (See para. 4 on next page.)

Figure 16.—Traversing oblique target.

4. **Explain and Illustrate**, with oblique targets, the target frontage is considered as the angular width subtended at the guns, and not the actual length of the target, e.g., in Figure 17 the distance to be taken into account is AC and not AB.

5. **Explain**. As a guide—a fire unit of two guns can engage an oblique target when the difference in range between the two ends is not more than 100 yards. If the difference exceeds that distance, only a portion of the target should be engaged at one time.

6. As the method of fire with this type of target requires the guns to traverse only half of the width of the target, the application of the combined sight rule will have to be modified, corrections being given as follows:

- All—down 50.
- All—up 100,
- etc.

7. With the aid of the spotlight apparatus, practise the engagement of oblique targets.

8. **Examples of fire orders to engage oblique targets.**

The following reference points have been selected on the landscape as shown in Plate 28.

(a) Haystacks (RP1) left bottom corner, known as Stack.

(b) Two poplars (RP2) left poplar known as Poplar.

Reference to Plate 28.

Target "G." Oblique target.
- 1,250 yards right end (range-finder).
- 1,150 yards left end.
- No. 1, 1,250.
- No. 2, 1,150.
- Poplar—left 8 o'clock—junction of hedgerow—right limit—
 left 8 o'clock—end of hedgerow—left limit.
- No. 1 right half.
- No. 2 left half.
- Traversing.
- Lay.
- Fire.

Target "H." Oblique target.
- 1,600 yards right end (range-finder).
- 1,500 yards left end.
- No. 1, 1,600.
- No. 2, 1,500.
LESSON 134.—TARGETS WITH DEPTH AND AREA TARGETS.

Instructor’s Notes.

Stores as for Lesson 133.

1. Explain.

(a) Targets with depth.—Such targets may present some width. This will be covered by tapping right and left. The number of taps required for range being calculated at the mean range.

The difference in range between the ends of the target should not exceed 200 yards for a section.

To ensure that the whole of the depth of the target is engaged by successive overlapping beaten zones, it will be necessary when the target is not on the line of sight, to alter the points of aim of the guns to different points on the target.

The points of aim and the elevations given to the guns should not both be changed at the same time.

In applying the combined sight rule, the mean range to the target will be used as a basis.

1st Method.—Order the mean range to both guns and, having indicated the extent of the target, lay them on the point half way up the target.

Order changes in elevation (No. 1 down 50, No. 2 up 50) or changes in points of aim (e.g., No. 1 near end, No. 2 far end) until finally No. 1 gun is laid at the near end with the lowest elevation required by the combined sight rule, and No. 2 at the far end with the highest elevation required by the rule.

This is the normal and most effective method of engaging the target.

2nd Method.—(More suitable for supporting by overhead fire the advance of own troops towards the target.)

Lay No. 1 gun at the near end of the target with the lowest elevation required by the combined sight rule. Lay No. 2 gun at the same point with the same range as No. 1 gun plus 50 yards. Order changes to both guns together by lifts of 100 yards or by changes in points of aim until finally No. 2 gun is laid at the far end of the target with the highest elevation required by the combined sight rule.

(b) Area targets.—1. These will be treated in a similar manner to targets with depth, but the width of the target will be traversed.

To deal effectively with these targets will entail the expenditure of a great deal of ammunition; and area targets should only be engaged as such when it is not possible to pinpoint targets within the area.
2. With the aid of the spotlight apparatus, practice the engagement of targets with depth and area targets.

Examples (Plate 20):

Target "I." Target with depth (1st method).

Near end 1,400 (range-finder).
Far end 1,600 (range-finder).

Order

All 1,500
Right of arc—ploughed field.
Left edge.
Half way up.
Right and left 2 taps.
Lay.
Fire.

Stop.
No. 1 down 50.
No. 2 up 50.
Go on.

Stop.
No. 1 down 50.
No. 2 up 50.
Go on.

Stop.
No. 1 near end.
No. 2 far end.
Go on.

Stop.
No. 1 down 50.
No. 2 up 50.

Order.

Near side 1,400 (range-finder).
Far side 1,600 (range-finder).

Remarks

Mean range is 1,500.

Mean range over 1,400 requires 2 taps.

i.e., 1,450, 1,550

i.e., 1,400, 1,600.

Point of aim changed, therefore elevations unchanged.

i.e., 1,350, 1,650 required by the combined sight rule.

Target "J." Area target (2nd method).

Near side 1,400 (range-finder).
Far side 1,600 (range-finder).

Order.

No. 1, 1,350.
No. 2, 1,490.

Last target—left 9 o'clock.
Square field.
Near side.
Traversing.
Lay.
Fire.

Stop.
All up 100.
Go on.

Stop.
All half way up.
Go on.

Stop.
All up 100.
Go on.

Remarks

No. 1 has lowest elevation required by combined sight rule to hit near end.

Note use of last target as a means of indication.

To take up width of target.

i.e., 1,450, 1,500.

Point of aim altered, therefore elevations not altered.

i.e., 1,550, 1,600.
LESSON 135.—MOVING TARGETS.

Instructor's Notes.

Stores as for Lesson 131, with vehicles, and fatigue men to act as targets.

When engaging moving targets, the line of fire must be directed a certain distance in front of the target in order to allow for this distance that the target will move during the time of flight of the bullet; the lead being so designed that the target and bullet will arrive simultaneously at the same spot on the ground.

1. Explain methods of engaging moving targets.

There are two methods of engaging moving targets:

(a) Engaging an area through which the target is likely to pass. This method is suitable for defeating targets, such as infantry making use of ground, unarmoured vehicles, and cavalry.

 It is carried out by selecting areas through which the target is likely to pass, and giving an anticipatory fire order based on the estimation of speed and direction of the target.

(b) Swinging traverse: Suitable against moving targets at close range, when other methods would be too slow; or when the target is particularly suited for this method of engagement—e.g., a line of infantry.

2. Fire control.

(a) Fire orders must be short and simple, otherwise the opportunity of engaging the target may be lost.

(b) The fire unit commander will maintain control until, owing to the closeness of the range or other factors, greater fire effect may be expected from gun control. He must change to gun control before unit fire control breaks down.

(c) When engaging a moving target, whether by section or gun control, attention must be directed continually to:

 (i) The changing line of sight, both horizontally and vertically.

 (ii) Alterations in range.

 (iii) The amount which the fire has to be directed in front of the target. This depends upon the speed and direction of the target. The maximum effect will only be obtained by quick judgment and a thorough knowledge of the machine-gun beaten zone.

3. The approximate angle in minutes through which the target will travel during the time of flight of the bullet can be determined by multiplying the target speed in miles per hour by the factor 5, at all ranges.

For targets moving obliquely across the line of fire a proportion of this allowance should be given.

Examples. (Plate 29.)

1. Target. — Two motor cycle orderlies moving from right to left at about 10 mph.

 Method of engagement. — By engaging an area through which the target is likely to pass.

LESSON 136.—THEORY OF INDIRECT FIRE.

Stores: Blackboard.

This lesson should take the form of a lecture.

1. Explain.—That a thorough understanding of the principles of indirect fire will enable an officer or NCO to apply any method or combination of methods which will best suit the particular circumstances of any situation.

 The details of this section, although covering the majority of cases, must not be considered as exhaustive, and the principles set forth can be applied in a variety of different ways.

2. The procedure for engaging a target by indirect fire is as follows:

 (a) Obtain initial line for the guns.

 (b) Parallel the guns on this initial line.

 (c) Calculate the necessary elevation to engage the target.

 (d) Ensure crest clearance and, if necessary, distribute the fire from the guns to cover the width of the target.
Once the guns have been paralleled on the initial line they are said to be on "zero lines," and direction is maintained by means of an aiming mark, usually an aiming post.

3. Initial Line.—The direction of the initial line is generally laid out so that the line of fire of one of the guns will fall on its correct position on the first target or on some easily recognisable point from which switches can be measured. This gun is known as the pivot gun.

The initial line may be obtained by any one, or a combination, of the following methods:

(a) Alignment of zero posts on the appropriate part of the target.
(b) Use of a distant aiming point.
(c) Use of a director.
(d) Laying the guns on a magnetic bearing.

In the first case, (a) the zero posts may either be aligned by "eye" only, on to the appropriate part of the target, or they may be aligned by director or by compass.

The pivot gun is then mounted with reference to the two posts and the other guns are paralleled from this gun.

In all other cases the process of placing guns on the initial line is automatically carried out as the guns are paralleled.

4. Paralleling.

(a) Lines which are parallel, when swung through the same angle, remain parallel.

To provide a basis from which fire can be switched in any direction, therefore, all guns are initially placed on parallel zero lines (Figure 18).

The gun frontage, which is the distance between the flank guns, is normally 54 yards for a platoon.

The gun position should be approximately at right-angles to the initial line of fire, and, when this is the case, the lines of fire of a platoon on parallel lines cover an area equal in width to the gun frontage.

The guns will be approximately equidistant from each other and so the lines of fire of Nos. 2 and 3 guns divide this width into three equal parts, viz. A, B, C (Figure 19).
(8) The two principles which are applied practically in paralleling guns are as follows:

(i) If a straight line diagonally cuts two other straight lines and the corresponding and opposite angles are equal, then these two straight lines are parallel.

Thus in Figure 20, if the angle Y is made equal to the angle X then AB is parallel to CD.

The process of making these two angles equal can, in machine gunnery, be done either by the dial sight, director, or compass. (See Lesson 138.)

In Figure 20, X and Y are corresponding angles and Y, and X, are opposite angles.

The sum of any two angles on the same side of a straight line, e.g., X and Z, is 180 degrees.

(ii) The smaller the angle subtended by the base of triangle the more nearly parallel are the opposite sides. (See Figure 21.)

This principle is applied in paralleling guns from a distant aiming point. (See Lesson 139.)

5. Elevation.—Elevation is calculated from the horizontal plane and is placed on the gun by means of the dial sight. It may be given either as a range and angle of sight or as a quadrant angle. (See Lesson 141.)

6. Crest clearance.—On all occasions when an indirect position is occupied, crest clearance must be ensured. This is done by comparing the lowest elevation that will ensure the lowest shot of the cone of fire clearing the crest with the lowest elevation necessary to hit the target. (See Lesson 142.)

7. Distribution.—When the target is of greater width than the gun frontage, guns are first placed on parallel lines with the pivot gun on its own portion of the target. Lines of fire are then either opened out, the gaps between them being filled by tapping right and left, or kept parallel and switched from one portion of the target to the other. In the latter case the target will not be so continuously neutralized. (See Lesson 143.)

8. As the dial sight is not attached to the gun at the point at which the gun pivots, the dial sight moves in an arc when the gun is swung through an angle.

To avoid inaccuracies resulting from this, the guns will be mounted in the first instance in the approximate direction of the target. As the angle through which the guns will be swung to bring them parallel on the zero line is small in consequence, the movement of the dial sight will not appreciably affect accuracy.

9. The practical application of the foregoing principles is explained in the lessons that follow. It is again emphasized that the following examples do not attempt to cover all the methods of paralleling, but that an understanding of the principles involved will enable any practicable method to be adopted.

LESSON 137.—FIRE ORDERS—INDIRECT

Stores: Blackboard and range tables.

This lesson should be carried out in the form of a lecture.

1. The form of orders given and the action to be taken will be found in Sec. 18. The sequence of an indirect fire order will be:

(a) Zero lines.
(b) Angles of switch.
(c) Elevation or elevations (including wind allowances if necessary).
(d) Load:
(e) Distribution (if any).
(f) Tapping right and left.
(g) Side wind allowance.
(h) Rate of fire (if required).
(i) Order to fire (as for direct fire).

2. Notes on indirect fire orders.

(a) Zero lines. (Lesson 136.) Before giving out angles to the respective guns, the order "Zero lines" will be given.

The angles are given to the nearest 10 minutes.

(b) Elevation or elevations. (Lesson 141.)—If a correction for atmospheric influences is necessary, it will be added to, or subtracted from, the angle of sight or QA before the latter is given out. (Lesson 127.)

Angles of sight and quadrant angles are converted to the nearest 5 minutes before being passed to the guns.

The elevation is given to the guns as under:

"All (or Nos. . . .) . . . hundred. Plus (or minus) . . . degrees . . . minutes."

"Elevation (or Depression). All (or Nos. . . .) . . . degrees . . . minutes."

Vickers MG Collection & Research Association - www.vickerssmg.org.uk
(e) **Distribution.** (Lesson 143.)—The order for distribution will always start with the pivot gun, for which the order "nil" is given. The angle of deflection for the other guns are given to the nearest 10 minutes.

(d) **Tapping right and left.**—The amount of traverse will be given in "taps," as for direct fire. Nos. 1 and 2 guns tap to the left first, Nos. 3 and 4 to the right first.

(e) **Side wind allowance.** (Lesson 127.)—The allowance is calculated for the range from the gun position, and ordered to the nearest 10 minutes.

3. **Orders during a shoot.**

(a) **Lifts.**—If in yards, will be given to the guns in the form:

- "All-up... (hundred or fifty)"

If in minutes, will be determined from the range table, and given in the form:

- "All-up... minutes"

This order may be given verbally or by signal as detailed in sub-para. (b) (ii) below.

(b) **Ranging corrections.**

(i) **Direction.**

The amount of switch required is measured by the director, glasses, or by slide rule according to the time available.

The correction may be given verbally, or the following semaphore signals may be employed:

- **T**... right 30 minutes.
- **L**... left 30 minutes.

To double or increase further the correction, the code letter will be repeated as necessary.

(ii) **Elevation.**

The fire controller estimates the correction required in hundreds of yards, and orders the result in the form:

- "All-up (or down)... (hundred or fifty)"

This order may be sent by semaphore signal as follows:

- **U**... up 50 yards or 10 minutes.
- **N**... down 50 yards or 10 minutes.

To double or increase further the correction, the code letter will be repeated as necessary.

If during the shoot it is seen that any gun or guns are firing over or short as compared with the remainder, the order "check elevations" will be given.

(c) **The engagement of a fresh target.**

(i) **Direction.**—The fire controller measures the angle of switch for the pivot gun as in sub-para. (b) (i) above.

- "All—on zero lines."

The angle of switch is then given out as follows:

- "Stop—all 3 degrees 30 minutes right of zero."

(ii) **Elevation.**—The angle of sight to the new target is taken with a director.

The elevation for the new target is calculated and ordered to the guns as in 3 (b) above.

(iii) The remainder of the fire order is normal, depending on the type of target.

(iv) **During pauses in the firing, and at any other time when it is possible, it is the duty of the fire controller to measure switches, and, with the assistance of his range-taker, to calculate the elevation for all probable targets in his arc. This calculation may reduce the time taken to open fire on new targets.**

LESSON 138.—PARALLELING—GUN ANGLE METHOD

Instructor's Notes

Stores: Two or more guns with tripods and dial sights, two zero posts, blackboard.

The theory will be explained indoors and the instructor will then give individual practice out of doors.

1. **Theory.**—(See Lesson 136, para. 4 (b) (i) in Figure 22 the pivot gun (G) is laid on the zero posts which have been aligned on the zero line. The line of fire is represented by the line GX.)

\[G_1 \text{ is the gun paralleled.} \]

If the angle B can be made equal to the angle A then the line of fire G_1 Y will be brought parallel to GX.

If the collimator of the pivot gun, represented by the arrow in Figure 23, is laid on the collimator of the gun to be paralleled, it will have moved through the angle C.

The angle A and the angle C together equal 180 degrees, therefore the angle A equals 180 degrees minus the angle C.

From Figure 23, however, it can be seen that the 180 degree mark has moved through an angle equal to C (the opposite angle) and in so doing has automatically subtracted the value of the angle C from 180 degrees and, therefore, shows the value of the angle A against the front pointer.

In Figure 24, if the dial of the dial sight on the gun to be paralleled is set to read the value of the angle A against the rear pointer, then the collimator will have moved through the angle D and this angle will be equal to the angle A.
But the angles D and B are equal (opposite angles) and, if the gun \(G_1 \) is tapped over until the collimator of the dial sight is in direct alignment with the collimator of the pivot gun, \(G_1Y \) and \(GX \) will be parallel.

2. The director may also be used on the same principle, for paralleling guns, under the following conditions:

(a) The target and gun position must be visible from where the director is mounted. The director should not be closer than 50 yards or farther than 150 yards from the gun position, nor should it be displaced more than 30 yards to a flank.

(b) The director will be laid on the part of the target, or on a point to the flank of the target, which corresponds to the position of the director in relation to the gun position.

(c) The arrow on the director will be set at 180 degrees on the dial, the deflection drums will be at zero.

3. Explain—Procedure—Two or more posts are aligned on the correct line for the 'pivot gun.' For example, if the width of the target is equal to the gun frontage, and No. 1 is to be the pivot gun, the posts will be aligned on the right flank of the target. They will be so placed that the line joining them passes over the approximate position chosen for the gun (Figure 25).

Both posts, or any two if more than two have been used, must be visible from this position at gun height. When the guns are brought up the pivot gun is mounted in direct alignment with the posts, with its dial sight at zero, and the gun is laid on them. It will then be on its zero line.

The remaining guns are so mounted that they have an uninterrupted view of the pivot gun, and can be placed on parallel lines to the pivot gun as follows:

(a) The dial sight of the pivot gun is laid on the collimator of the dial sight of each other gun in turn and the angle read out, using the front pointer.
(b) The other guns set on their dial sights the respective angles as ordered, and then tap their guns until their dial sights are laid on the collimator of the dial sight of the pivot gun.

c) When this process is complete, all guns will be parallel and dial sights will then be reset at zero.

When the director is being used the hair line will be laid on the collimator of each gun in turn and the appropriate angle given out to the gun concerned.

The dial sight of each gun will be set at the angle ordered, and the gun tapped over until the collimator of the dial sight is laid on the director.

Guns will then be parallel to the initial line on which the director was laid.

LESSON 139.—PARALLELING (A) DISTANT AIMING POINT AND POSTS METHOD. (B) DISTANT AIMING POINT AND TARGET METHOD.

Instructor’s Notes

Stores: Director, two or more guns with tripods and dial sights, two zero posts, blackboard.

Method of Instruction: The theory will be explained indoors, and the instructor will then give individual practice out of doors.

1. Explain.

(a) These methods are a possible alternative when speed is essential and there is a suitable distant aiming point.

They depend on the fact that, when the aiming point is very distant, if the guns are laid on it their lines will be practically parallel. For example, it can be seen in Fig. 26 that the farther away the aiming point is, the more nearly will the guns be parallel on the target $T_1 T_2$.

The diagram illustrates the worst case where the aiming point is exactly behind the target. In practice, the aiming point may be anywhere with reference to the gun position. When there is a choice the aiming point lying nearest to a line in prolongation of the gun position will give the best results.

(b) For this method to be effective certain conditions must be fulfilled:

(i) When the aiming point is in prolongation of the gun position it may be as close as 1,000 yards.

(ii) When the line joining the aiming point to the gun position is at an angle of not more than about half a right angle, the aiming point may be as close as 4,000 yards.

(iii) When the line joining the aiming point to the gun position is at a greater angle, the aiming point may be as close as 7,000 yards.

2. Procedure.

(a) Distant aiming point and posts method.

(Posts will be planted as in Lesson 138.)

The pivot gun is mounted in direct prolongation of the posts, and the angle between the posts and aiming point is measured. This angle can also be measured by means of the director.

This angle is given out as an angle of switch.

All guns put this angle on their dial sights, and are tapped over until their dial sight is laid on the aiming point.

As they have all moved through the same angle off the aiming point they can be regarded as parallel.
B. Distant aiming point and target method

(i) Occasionally it may be possible to see both the target and the distant aiming point through a director mounted at the gun position.

(ii) Procedure.—The angle between the target and the distant aiming point is measured with a director.

This angle is given out as an angle of switch.

All guns set this angle on their dial sights, and are tapped over until their dial sights are laid on the distant aiming point.

LESSON 140.—CREST METHOD

Instructor's Notes

Stories: two or more guns with tripods and dial sights.

Method of Instruction: The theory will be explained indoors, and the instructor will then give individual practice out of doors.

1. Explain.—This is a rough-and-ready method for use at ranges not exceeding 1,500 yards, or when observation of strike will probably be obtained.

It can be used when the guns are in action just behind the crest and the target, although not visible from the gun height, can be seen by the fire controller from any position directly behind the guns up to about 25 yards in rear.

2. Procedure.—The fire controller will measure the angle of sight to the target.

The section commander stands or kneels behind each gun in turn at a convenient distance away. He orders No. 1 to raise the tangent sight and to lean aside. He then orders him to tap the gun right or left until it is laid on to its correct position on the target.

LESSON 141.—OBTAINING ELEVATION

Instructor's Notes

Stories: Blackboard, range tables, directors.

Method of Instruction: The procedure will be explained indoors. The squad will be practised with examples, and the instruction completed out of doors on various types of targets.

1. Explain.—Elevation is obtained by the process given below:

The angle of sight to the target will be taken from a position which is reasonably close to the gun position. Measure the angle of sight to the target by means of the director. For all practical purposes this angle can be taken as being the angle of sight from the gun position. Correct the range given by the range-taker by the amount his instrument was in front of, or behind, the guns. The elevation will be given to the guns as a range plus or minus the angle of sight, or as a quadrant angle.

2. In the application of the combined sight principle to indirect fire, the fact that the guns are either on parallel lines or distributed means that they must all be given the same lifts (up or down) together. Thus, when engaging a point target at 2,200 yards (range-finder) with an angle of sight from gun to target of plus 20 minutes (no wind), the successive orders for elevation would be:

<table>
<thead>
<tr>
<th>Opening elevation</th>
<th>All 2,200 - 20'</th>
<th>For All 4° 20'.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Second elevation</td>
<td>All down 50</td>
<td>Or All down 10'.</td>
</tr>
<tr>
<td>Third elevation</td>
<td>All up 100</td>
<td>The lift for 50 yards at 2,200 yards</td>
</tr>
<tr>
<td>Fourth elevation</td>
<td>All down 150</td>
<td>Or All down 30'.</td>
</tr>
<tr>
<td>Fifth elevation</td>
<td>All up 200</td>
<td>Or All up 40'.</td>
</tr>
</tbody>
</table>

3. (a) Oblique targets.—The target may have a different range and/or angle of sight to each end. In this case the right section will be laid at an elevation to engage the right half of the target, the left section at an elevation to engage the left half. This procedure will be as follows:

The range will be taken to one end of the target. The fire controller will add 50 yards to the lesser range and subtract 50 yards from the greater range. He will give the resultant ranges for the appropriate half of the target to each section.

The angle of sight will be taken to two points approximately one-quarter of the way in from either end of the target.

The appropriate angle of sight will be given to each section.

The width of the target will be covered by distribution if necessary.

(b) Depth targets.—The methods for engaging depth targets when using indirect fire are basically the same as for direct fire.

1st Method.—Engaging the target by starting in the centre.

Guns are initially laid at the mean quadrant elevation. The depth of the target, together with any extra elevations required by the combined sight rule and difference in angle of sight, is then covered by elevating and depressing the guns in lifts of 50 yards.

Example:

<table>
<thead>
<tr>
<th>Range: far end</th>
<th>Angle of Sight, far end</th>
<th>Range: near end</th>
<th>Angle of Sight, near end</th>
<th>Mean quadrant elevation</th>
<th>Depth of target (200 yards) requires four lifts of 50 yards</th>
<th>Combined sight rule at mean range (five elevations) requires four lifts of 50 yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,300 yards</td>
<td>+33 minutes</td>
<td>2,100 yards</td>
<td>+7 minutes</td>
<td>2,200+20 minutes</td>
<td>Difference in angles of sight requires two lifts of 50 yards</td>
<td></td>
</tr>
<tr>
<td>2,300 yards</td>
<td>+33 minutes</td>
<td>2,100 yards</td>
<td>+7 minutes</td>
<td>2,200+20 minutes</td>
<td>(The latter is calculated by converting the difference in angles of sight into Lifts of 50 yards at the mean range. e.g. It is required to come down 13 minutes and go up 13 minutes. The lift for 50 yards at 2,200 yards is 10 minutes. It will be seen, therefore, that an additional two lifts are required, as shown above.)</td>
<td></td>
</tr>
</tbody>
</table>

2nd Method.—Engaging the target by starting at the near end.

Guns are initially laid at the lowest range required by the combined sight rule together with the angle of sight to the near end of target. The depth of the target, together with any extra elevations required by the combined sight rule and the difference in angle of sight, is then covered by elevating the guns in lifts of 50 yards.

Example:

<table>
<thead>
<tr>
<th>Range: far end</th>
<th>Angle of Sight, far end</th>
<th>Range: near end</th>
<th>Angle of Sight, near end</th>
<th>Lowest quadrant elevation</th>
<th>Depth of target (200 yards) requires four lifts of 50 yards</th>
<th>Combined sight rule at mean range (five elevations) requires four lifts of 50 yards</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,300 yards</td>
<td>+33 minutes</td>
<td>2,100 yards</td>
<td>+7 minutes</td>
<td>2,000+5 minutes</td>
<td>Difference in angles of sight requires two lifts of 50 yards</td>
<td></td>
</tr>
<tr>
<td>2,300 yards</td>
<td>+33 minutes</td>
<td>2,100 yards</td>
<td>+7 minutes</td>
<td>2,000+5 minutes</td>
<td>(The latter is calculated by converting the difference in angles of sight into Lifts of 50 yards at the mean range. e.g. It is required to come down 13 minutes and go up 13 minutes. The lift for 50 yards at 2,200 yards is 10 minutes. It will be seen, therefore, that an additional two lifts are required, as shown above.)</td>
<td></td>
</tr>
</tbody>
</table>
Difference in angles of sight (28 minutes) requires three lifts of 50 yards.
(The latter is calculated by converting the difference in angles of sight into lifts of 50 yards at the mean range.

e.g.
The difference in angles of sight is 28 minutes.
The lift for 50 yards at 2,200 yards is 10 minutes.

It will be seen, therefore, that an additional three lifts are required, as shown above. Thus, by engaging the target from the near end an extra elevation is required in this example.

Note.—To engage a target with a difference in range of 50 or 150 yards from the near end an extra elevation is required in this example.

When starting in the centre, the fire controller will have a choice of two opening elevations. It is suggested that he takes the higher elevation, but if he really does not matter, provided he remembers that, if he opens fire on the lower elevation, he will have to give an extra 50 yards lift above the opening range. If he chooses to open fire on the higher elevation, he will have to give an extra 50 yard lift below the opening range.

Examples:

Range: right end	1,700 yards.
Range: left end	1,590 yards.
Angle of Sight quarter way in	+10 minutes.
Angle of Sight quarter way in	+5 minutes.
Elevations: Right section	1,650+10 minutes
Elevations: Left section	1,650+5 minutes
Range: right end	1,800 yards.
Range: left end	1,610 yards.
Angle of Sight quarter way in	+20 minutes.
Elevations: Right section	1,700+50 minutes
Elevations: Left section	1,650+20 minutes

LESSON 142.—CREST CLEARANCE

Instructor's Notes

Stores: Blackboard, range tables, director, gun and tripod with dial sight.

Method of Instruction: The procedure will be explained indoors. The squad will be practiced with examples and the instruction completed out of doors on various types of targets.

1. **Explain.—** The initial responsibility for determining whether the bullets will clear the crest in front of the gun rests with the fire controller. He must ensure that, when he chooses the gun position, clearance exists for the target or targets he intends to engage.

 It will not always be necessary or practicable to resort to measurement by instruments and calculation of crest clearance during the reconnaissance for the gun position. With practice it may often be possible to judge how far back the gun position can be situated without risk of the bullets striking the crest.

 If, however, the range is short and the slope steep, it will be necessary to check the clearance as outlined before the gun position is decided on and the guns are brought up.

 The subsequent responsibility will rest with the NCO in charge of the gun position. He must ensure that after the guns have been laid initially for direction and elevation, no gun is fired unless the bullets will clear.

Further, he must, at the first opportunity, ascertain the lowest quadrant angle at which the crest can be cleared and report it to the fire controller.

Calculations should always be made with reference to the highest point over which the guns may be called upon to fire.

The procedure for ascertaining the minimum quadrant angle, either before or after the guns have occupied the position, and for checking whether the bullets will clear the crest after the guns have been given their initial line and elevation, is given below.

2. **To ascertain the minimum quadrant angle.**

 (a) Theory.— To ensure that the lowest shot of the cone clears the crest the following factors must be allowed for:

 (i) The tangent angle for the range to the crest plus the possible error in determining the range.

 (ii) The height of the centre shot above the lowest shot.

 (iii) The angle of sight from the gun to the crest.

 The sum of (i) and (ii) is known as the "Crest Clearance Angle" and is given for each range in the range table.

 (b) Procedure

 (i) Estimate the range from the gun position to the crest or take it by range-finder. Look up the crest clearance angle for that range.

 (ii) Using the director at gun height, or a gun, at the lowest part of the gun position in relation to the crest, measure the angle of sight to the crest. When using a gun this measurement is carried out as follows:

 Set the tangent sight at zero and lay at the highest point of the crest over which the guns may be called upon to fire. Affix the dial sight with range and elevation drums at zero, and level the bubble, using the angle of sight drum. Read the angle of sight from the drum. By adding the crest clearance angle to this figure the minimum quadrant angle is obtained.

3. **To ascertain, after the guns have been laid for elevation and direction, whether the crest will be cleared:**

 (a) If the range to the crest is not more than 200 yards:— Set the tangent sight at 400 yards. If the line of sight clears the crest, the bullets will clear.

 (b) If the range to the crest is more than 200 yards:— Add 200 yards to the range to the crest. Place the resultant range on the tangent sight. If the line of sight clears the crest, the bullets will clear.

 (c) If a downward correction is ordered, the Nos. 1 will automatically check for crest clearance.

LESSON 143.—DISTRIBUTION

Instructor's Notes

Stores: Director, range tables and slide rules, two or more guns with tripods and dial sights.

Method of Instruction: The theory will be explained indoors, and the instructor will then give individual practice out of doors.

1. **Explain.—** When the width of the target to be engaged is greater than the gun frontage, the parallel lines of the guns may be opened out so that the flank guns are on the flanks of the target, and the remaining guns on points which divide the target into three equal parts.

2. **Procedure.**

 (a) Measure the angle subtended by the target at the observation post. This can be taken as the same as the angle subtended by the target at the gun position.
(b) From the VI graph or slide rule find the angle subtended by the gun frontage at the range to the target, and subtract this angle from the first.

c) Divide the difference in angle by the number of gun intervals. This will be the angle of distribution.

(d) The gun next to the pivot gun is swung away from the line of the latter by the angle of distribution, the gun two away from the pivot gun by twice the angle of distribution, and the gun on the other flank to the pivot gun by three times the angle of distribution.

Example:
Range to target, 1,800 yards.
Angular width of target 3 degrees 50 minutes.
No. 4 is pivot gun.
45 yards (gun frontage) subtends 1 degree 27 minutes at 1,800.

3° 50′
1° 27′
3° 23′

Distribution—No. 4, Nil.
No. 3, R. 50 minutes.
No. 2, R. 1 degree 40 minutes (2 x 48 minutes).
No. 1, R. 2 degrees 20 minutes.

Notes—(1) Angles given out to guns to nearest 10 minutes.
(2) Where oblique targets have a different range to each end, the mean range will be used for calculating the angular width of the gun frontage.

4. It can be seen from Figure 28 that when the lines of fire have been opened out four points only, T₂, B, C and T₁, are struck by the beaten zones. It is necessary, therefore, to tap right and left in order that the intervening spaces may be engaged.

Each gun must tap right and left half one of the intervening spaces in order to cover the target. As these spaces are one-third of the target frontage, the rule for determining the amount of taps right and left is to divide the total angular frontage of the target by six. The figures resulting are given to the guns to the nearest tap. As already stated, the flank guns traverse outside the flanks of the target to allow for errors in direction.
Since one gun cannot engage, with the best effect, more than about 50 yards of frontage, the width T1T2 should not exceed about 150 yards.

3. Targets with width greater than the gun frontage can be engaged either by opening out the lines of fire by means of distribution, or by keeping the guns on parallel lines and switching them from one portion of the target to another. The method employed will depend on the nature of the target and the time available.

SECTION 26.—NIGHT FIRING

1. This section contains the arrangements to be made for engaging a target at night. It should be noted that these arrangements can be applied to conditions of bad visibility such as fog, dust, or smoke.

2. The simplest method of night firing is when the guns can be brought into position by day, laid, and aiming posts planted. If more than one target is to be engaged, it would be necessary to place the guns on zero lines. At dusk, aiming lamps will be put out. (See Lesson 77.) If the target is not visible from the gun position, indirect means must be employed to lay the guns.

3. Before darkness falls all data required to enable the various targets to be engaged must be obtained.

These include some or all of the following:

- The angles of sight and ranges to the various targets.
- The angular width of the targets.
- The angles of switch.
- Data affecting any existing or possible safety problem.

It is essential that the magnetic bearing of the zero line should be recorded as a check.

To overcome difficulties which may arise owing to casualties, the information should be recorded in a uniform manner. A suggested method is shown as follows:

Platoon data.

Magnetic bearing of zero line, 3 degrees.

Safety.

Any other information.

Figure 29.

Section data.

1800 YDS 1750 YDS AW 4°

AW 3°

12°

1750 YDS 1595 YDS

AW 5°

+5°

-5°

1595 YDS

45 YDS

PG

Magnetic bearing of zero line, 121 degrees.

Safety.

Any other information.

Figure 30.

4. When firing is carried out from positions behind the forward localities, special precautions, such as posting sentries or wiring the danger area, must be taken to ensure the safety of our own troops when passing near the gun positions.

LESSON 144.—RECONNAISSANCE BY DAY

Instructor's Notes

Shores: Gun flags, direction pegs, zero posts, director, slide rules and range tables.

Method of Instruction: A simple tactical situation will be defined and the procedure explained. The squad will practise putting out pegs both in front and in rear of the gun position.

Explain:

It is necessary to put out direction pegs and zero posts for each gun on zero lines, in order that the guns can be switched from the zero line to fresh targets. The direction pegs and zero posts may be in front of or behind the gun flags.

Reconnoitre for the gun positions, and place in a gun flag to mark each position.

A zero line is selected. A target may make a suitable zero line, or, should the arc be a wide one, some point in the centre of the probable target area.

A direction peg for the pivot gun is placed in direct alignment of the gun flag and the zero line.

Place a zero post accurately in line with, and between, the gun flag and direction peg.

1. Both direction peg and zero post will be put in by using a director.

The direction peg should be about 20 to 30 yards from the gun flag and the zero post, and in such a position that it will be silhouetted against a lamp held behind the direction peg.

Where a DAP is available (Lesson 139), measure with a director the angle between the DAP and the zero line for the pivot gun. Mount the
director in turn over the remaining gun flags, lay this angle off the DAP, and place the direction peg and zero post on this line.

Where no DAP is available, the following gun angle method may be adopted:

Mount the director, with the pointer set at 180 degrees, over the pivot gun flag.

Put out gun flags for each gun (G1G2) (Figure 29).

Place a direction peg (P1) and zero post (Z1) on the zero line for the pivot gun, either in front of or behind the gun position.

![Diagram of gun flags and director setup](image)

Figure 31.

Lay the hair line of the director on to the other gun flag and record the angle.

Mount the director over the second gun flag with the pointer set at zero and the hair line laid on the pivot gun flag. Apply the angle measured above to the director and place out a direction peg and zero post for the second gun.

2. To avoid exposing personnel in front of the gun position, it may often be desirable to place the direction pegs and zero posts in rear of the gun flags. In this event it may be necessary to screen the aiming lamps from the front when giving direction to the guns.

When the guns are brought up the procedure is as described in section drill—night firing (Sec. 19).

3. On occasions it may be necessary to place out the posts and pegs to a flank of the zero line. On such occasions the angle of switch from the posts to the zero line will be recorded.

4. When it is required to occupy an indirect platoon position, the same principles will apply.

LESSON 145.—RELIEF OF GUNS BY NIGHT

Instructor’s Notes

Stores: Two or more guns and tripods, dial sights, gun flags, direction pegs, zero posts, aiming lamps, aiming posts.

Method of Instruction: Guns will be in position laid for direction and elevation.

The procedure of relief will be carried out in detail.

Where opportunity offers, from this lesson can be developed the full process of occupation and relief by two separate sections.

Explain.

1. The collimator on the gun to be relieved will be zeroed. The angle to the aiming lamp will then be measured and handed over to the non-commissioned officer in charge of the relieving gun.

2. The non-commissioned officer in charge of the relieving gun will supervise a gun flag being placed accurately under the socket of the gun to be relieved. To do this the gun and cross head will be removed.

3. The gun to be relieved will then be removed; the relieving gun being mounted accurately over the gun flag.

4. The angle measured in (1) above will be set on the dial sight of the relieving gun, and the gun then tapped until the collimator is aligned on to the aiming lamp of the section being relieved. The relieving gun is then laid for direction. Elevation will then be placed on the gun.

5. When both guns in the relieving section are laid for direction and elevation, this aiming lamp will be removed. The relieving section will then put out its own aiming lamp.

LESSON 146.—WHEN THE GUN POSITION CANNOT BE REACHED BY DAY

Instructor’s Notes

Stores: Compass, gun and direction pegs, gun flags, zero posts, one (or more) gun, tripods and dial sights.

Method of Instruction: The class will practice laying out compass lines from gun flags. The measuring of direction and elevation from the map should not be practised until Lesson 147 is reached. The class will then practice as in (2).

Explain.

1. When a map is available.

The true (or grid) bearing from the pivot gun to the target or zero line is measured from the map and converted to compass bearing; using a compass, gun flags, direction pegs and zero posts for each gun are put out on this bearing (Lesson 147). The guns are then mounted over the gun flags.

If desired, a gun flag, direction peg and zero post for the pivot gun only can be put out by means of the compass. The guns are mounted, the pivot gun being mounted over its gun flag and given direction. The remaining guns are then placed on parallel lines by the gun angle method (Lesson 138). The point of aim for each gun must be illuminated.

When using either of the above methods great accuracy cannot be expected.

2. When no map is available.

If circumstances allow of a light being shown on the spot where it is desired that the fire should fall, arrangements can be made to fire on a fixed line at short range, with fair accuracy.

The procedure is described in Lesson 155.
SECTION 27.—MAP SHOOTING

1. Accurate shooting from the map is only possible when a map scale 1/50,000 or larger is available. Where accuracy is not essential, for example, for the engagement of areas well removed from the position of our own troops, maps of smaller scale should not be ignored, but it should be noted that the detail on such maps is not usually "surveyed in."

2. The principle of map shooting is that all calculations, both for direction and elevation, are made from the map.

The method has certain definite advantages, namely:

(a) No observation post is necessary.
(b) Targets can be engaged which cannot be seen from the ground.
(c) Preparations to open fire can be made before the actual targets have been located.
(d) Any number of targets can be engaged by switches.
(e) It is just as flexible by night as by day.
(f) It also has certain disadvantages, namely:

(i) 1/50,000 maps are not always available.
(ii) Maps are liable to distortion. (This difficulty can be overcome.)
(iii) Accurate location of points on the map is often difficult.
(iv) Corrections by observation of fire are not possible, there being no OP.

3. The method entails:

(a) Location of guns on the ground, and marking in the position of the pivot gun on the map.
(b) Laying out the zero line for each gun.
(c) Location of target or targets on the map, and calculating data required to hit them.

The processes (a) and (b) must be carried out in daylight, though the guns themselves need not be brought into action until after dark. Therefore, orders for a map shoot to be carried out at night must reach the platoons concerned in sufficient time before dark.

4. The position of the pivot gun can be fixed on the map, either:

(a) By resection, using one of the following methods:

(i) Resector protractor. (See Small Arms Training, Volume I, Pamphlet 7, Part I, Lesson 41.)
(ii) Tracing paper.
(iii) Compass.

(b) By comparing the detail on the ground with the detail on the map.

5. The most common method is that mentioned at para. 4 (a) (i) above, and is carried out as follows:

Resection by resector protractor:

(a) From selected position for pivot gun locate three objects visible on the ground which can be identified on the map.
(b) Mount a director over the pivot gun position (with all dials at zero) and lay on one of these points.
(c) Measure the angle to each of the other points in turn.
(d) Set these angles on the resector protractor by moving the pivoting arms; clamp up.
(e) Place the resector on the map and move it about until the bevelled edges of the arms pass through the points on the map. The position of the pivot gun will then be in the centre of the pencil hole, and should be marked in on the map with a sharp-pointed pencil.

Notes.—When no director or dial sight is available, the above angles can be measured by taking bearings to the points selected, subtracting one from the other.

6. When for some reason a resector protractor is not available, the above type of resection can be carried off with tracing paper as follows:

Resection by tracing paper:

(a) Proceed as described in para. 5 (a), (b) and (c) above.
(b) On a good sized sheet of tracing paper, draw a straight line, and mark a point of origin at one end of it.
(c) From the point of origin, using a protractor, draw in two further lines, making the angles between these two lines and the original line equal to those measured by the director.
(d) Write alongside each line the name of the point to which the angles were measured by the director. (This will save confusion when moving the tracing paper about the map.)
(e) Place the tracing paper on the map, and move it about until the lines pass through the selected points on the map.
(f) By inserting a pin or a sharp pencil through the point of origin, mark on the map the position of the pivot gun.

7. Resection for compass.—For details of method see Manual of Map Reading, Photo Reading and Field Sketching, 1929, Sec. 141.

8. Where time permits, greater accuracy is obtained by employing one method and checking with another.

It may be possible to obtain the aid of a survey unit where a very accurate location is necessary.

LESSON 147.—SHOOTING FROM THE MAP

Instructor's Notes

Stores: Map (minimum scale 1/50,000), protractor, compass, gun and direction flags, gun flags, zero posts, director, range tables.

Method of Instruction: The class will be instructed in measuring angles and bearings on the map and will then work out problems of elevation, distribution, crest clearance and safety. The class will practise out of doors the location of the pivot gun, both by resection and local detail.

Explain.

1. Direction.

(a) A zero line is chosen in the centre of the target area or, if the targets are not known, in the most suitable direction. This line is represented by the line GZ in Figure 32. (2 need not be visible from the gun position.)

Two methods may be employed for placing the guns on their zero lines:

(i) By means of a reference point.
(ii) By compass.

(b) By reference point.

A reference point which is both marked on the map and visible from the pivot gun is selected. (See Figure 30.)

The zero line of the pivot gun is drawn on the map (GZ). The line joining the pivot gun to the reference point is also drawn in (GR).

The angle RGZ is measured with a protractor.

If the guns are in position:

This angle is set on the dial sight of the pivot gun, which is tapped over until the dial sight is laid on the reference point. The remaining guns are paralleled by the most suitable method.

If R conforms to the requirements of a DAP, all guns swing through the angle RGZ.
If the guns are not in position:—
Mark the point G with a gun flag.
Mount a director centrally over it, and swing through the angle RGZ.
Place a direction peg and zero post on the line GZ a suitable distance from the gun flag.
Mark the positions for the remaining three guns with gun flags.
Place direction pegs and zero posts for each gun on lines parallel to GZ, by any of the methods described in Lessons 111 and 112.
(c) By compass. (Should only be used when no daylight reconnaissance is possible, or when there is no suitable reference point.)
The magnetic bearing of the target from the pivot gun must be found.
To find this bearing:
(i) Draw a line on the map, along the zero line of the pivot gun.
(ii) Using a protractor, measure the bearing this line makes with a grid north and south line. This is the grid bearing of the zero line of the pivot gun.
(iii) Convert this bearing to a magnetic bearing by adding the magnetic variation if the variation is west; by subtracting if the variation is east.
(iv) Add or subtract the compass error.
(e) To lay the pivot gun on the magnetic bearing so obtained:
(i) (By day): Place a non-magnetic peg in the position for the pivot gun and hold the compass over this peg, rotating it until the required bearing is obtained.
Align two zero posts on this bearing, using the hair line on the compass in the same way as the hair line on the director.
To parallel the remaining three guns, proceed as for the gun angle method.
(ii) By night: See Lesson 146.

3. Angle of sight. Examine the contours and note the height of the guns and the target, and thus determine the difference in height between the two.
Now refer to the QA graph in the range tables:—

(a) Follow down the vertical line at the range to the target, and note where it cuts the horizontal line at the height that T is above or below G.
(b) Note the point on the curve at which these two lines intersect, and read off the QA:

\[\text{Range to target} = 3,900 \text{ yards.} \]
\[\text{Height of guns} = 100 \text{ metres.} \]
\[\text{Height of target} = 140 \text{ metres.} \]
\[\text{Difference in height} = 40 \text{ metres.} \]
\[\text{QA} = 13 \text{ degrees.} \]

If the QA graph is not available, the angle of sight can be calculated from the VI table or slide rule, and the elevation determined in the normal manner.

\[\text{e.g., TA for 3,900 yards} = 12 \text{ degress 22 mins.} \]
\[40 \text{ metres, or} \]
\[44 \text{ yards at 3,900 yards} = 38 \text{ mins.} \]
\[\text{QA} = 13 \text{ degrees.} \]

In the event of none of these being available, the scale of angles of sight in minutes shown on the arms of the resector protractor may be used.

4. Distribution.—On the map, join the position of the pivot gun and the two ends of the target.
Measure the angle thus formed at the pivot gun and work out distribution as for indirect fire.

5. Crest clearance.—It may be necessary to ascertain whether the bullets will clear an obstruction which is not visible from the gun position.
Draw a line on the map between gun position and target and see if this line passes through a contour higher than the gun position. If a crest is found to be in the line of fire the procedure will be as follows:—

(a) Measure the range to the crest.
(b) From comparison of the contours find out by what amount the worst part of the crest is above the guns.
(c) Add to this the lower half of the cone of fire at the range to the crest.
(d) Using the QA graph:

Find the horizontal line for the height of the crest plus the lower half of the cone. Find the point at which this cuts the vertical line at the range to the crest. Note the nearest curve to the point of intersection.

This gives you the MQA to clear the crest; and the lowest QA to hit the target must be equal to or greater than this MQA.

\[\text{e.g. (Taking the case of the previous example)} \]
\[\text{Range to crest} = 500 \text{ yards.} \]
\[\text{Crest} = 20 \text{ metres above guns.} \]
\[\text{Lower half of the cone of fire at 500 yards} = 1 \text{ metre.} \]
\[\text{At the intersection of the 500 yards and 21 metres lines is found the 3 degrees curve. This is the MQA.} \]
\[\text{Lowest QA to engage target} = 12 \text{ degress 20 minutes.} \]
\[\text{Guns will clear crest.} \]

6. Safety calculated from the map.

(a) Ascertain from the contours the highest point on which own troops are located, and over which there is a possibility of fire being directed.

Vickers MG Collection & Research Association - www.vickersmg.org.uk
Subtract from this height the height of the gun position. This gives the height of the crest (on which the troops are) above the gun position.

(b) Add to this height the minimum clearance required at the range to our troops. From the QA graph determine whether the trajectory curve for the lowest QA for the target clears this height at the range to our troops.

\[\text{Range} \quad \text{Contour} \quad \text{level} \]
\[\begin{array}{ccc}
\text{Gun position} & \quad 2,500 \text{ yards} & 105 \text{ metres} \\
\text{Target} & \quad 1,000 \text{ yards} & 120 \text{ metres} \\
\text{Own troops} & \quad 1,000 \text{ yards} & 145 \text{ metres} \\
\end{array} \]

Target is 15 metres above the gun, therefore QA required is 5 degrees. (Taken from QA graph, using a range of 2,400.) Our troops are 40 metres above the gun.

The minimum clearance is 17 metres (from QA graph, at bottom) at 1,000 yards.

Therefore total clearance required = 57 metres.

The 5 degree curve gives a clearance of 63 metres at 1,000 yards, therefore our troops are safe.

7. Fighting map.—When a position is to be occupied for some time, and maps of sufficiently large scale for accurate shooting are available, steps should be taken to prepare a fighting map, so that new targets can be engaged in the minimum time. This entails either drawing on the map itself, or taking a plan on paper, a combination of degree and range scales in the form of that shown on Plate 30.

The centre of the circle at the bottom is placed at the position of the pivot gun, and the line marked 0 degrees at the top placed along the zero line. A thread is attached to a pin and stuck in the position of the pivot gun.

When the co-ordinates of a target are received they are plotted in the map, and by means of the thread the angle of switch from zero can be read off. The tangent angle is then noted and the angle of sight calculated.

SECTION 28.—FIRE DIRECTION AND CONTROL CHARTS

1. For the conduct of programme shoots, when fire is required at varying periods on one or more targets, it will generally be preferable to issue charts for the direction and control of fire. Such charts are usually preferable for shooting off the map and for firing by night; for example, in the provision of covering fire for a dawn attack, harassing fire, counter-preparation, barrages, etc.

2. Fire direction charts will be prepared by the machine gun company commander, with the object of allotting tasks to individual platoons, or, occasionally, sections. A suitable form is shown on page 59.

Time must be allowed in the programme for the lifts and switches to be put on the guns. At night, a pause of 30 seconds should be allowed for each lift and 60 seconds for each switch. When tapping right and left is required, the time taken to complete the series of bursts and taps should also be allowed for.

In prolonged programmes, pauses should be allowed for the maintenance of the guns. The pauses should be so arranged that never more than one gun at a time is stopped for this purpose.

3. Fire control charts are made up by platoon commanders. They are prepared from data obtained from the fire direction chart, if issued, and by measurement.
These fire control charts will be issued on the following basis:
(a) By day: One copy for the platoon commander, showing the data for one gun. One copy for each section commander, showing the data for their respective two guns.
(b) By night: As above, with the addition of one copy for each No. 1 showing the data for that particular gun.

The chart contains the actual detail of switches, timing and rates of fire, and the elevation and number of tapes right and left to be employed for each target. A suitable form is shown on page 60.

LESSON 148.—PREPARATION OF CHARTS
Instructor's Notes

Method of Instruction: Officers will be instructed in the preparation of both types of chart, both from detail on the map, indoor work, and from reconnaissance on the ground, outdoor work. Non-commissioned officers will study only the preparation of fire control charts. They will be given a fire direction chart and instructed in compiling the fire control charts, both from detail on the map and on the ground.

1. Explain.
(a) Fire control charts will be made out for each gun to save the shouting of orders by night and to improve the control of fire.
(b) They will be made out by the platoon commander or platoon sergeant from details obtained from a reconnaissance.
(c) The angle of deviation from zero to any target is the actual deflection from the zero line to bring the gun on to its correct position on that target. With a platoon, it is found by combining the angle of switch from the zero line with the angle of distribution, if any, or its correct multiple (see Figure 33). With a section, it is formed by combining the angle of switch from the zero line with the angle necessary to bring each gun a quarter of the way in from its own flank of the target. When dealing with targets with width equal to or less than the gun frontage, guns are kept on parallel lines.
(d) Elevation.—Combined sight rule applies.
(e) Corrected elevation and deviation.—If atmospheric conditions necessitate corrections, these should be made at the last possible moment.
(f) Tapping right and left.
(i) Direct fire.—If the guns are on parallel lines, convert half the gun frontage to minutes, convert to the nearest tap, and add one additional tap for overlap.
e.g. Half gun frontage at range to target = 23 minutes

Taps right and left = 3.
If not on parallel lines, convert one-quarter of the width of the target to minutes, convert to the nearest tap, and add one additional tap for overlap.
e.g. One quarter target frontage = 1 deg. 10 mins.

Taps right and left = 6.
(ii) Indirect fire.—As already taught in indirect fire.

Angle \(2G_A = \) Angle of switch.
\[CG_X = \] distribution.
\[G_X = \] deviation from zero, No. 3 gun
\[G_X = \] deviation from zero, No. 2 gun
\[G_X = \] deviation from zero, No. 1 gun

Example:—Section charts.

Note.—(a) No. 1 gun pivot gun throughout.
(b) Angles of switch bring No. 1 gun from original zero line to right end of each target unless target is of less width than gun frontage, in which case it will be brought to the centre.
(c) Gun frontage 20 yards.

No. 1 Task. (Target wider than gun frontage.)

<table>
<thead>
<tr>
<th>Range</th>
<th>Data obtained</th>
<th>Recorded on chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,100 yards</td>
<td>A. of 5 plus 5 mins</td>
<td>A. of 5 plus 5 mins</td>
</tr>
<tr>
<td>Angle of switch from pivot gun = R.14 degrs.</td>
<td>Width of target = 4 degrs. 40 mins.</td>
<td>Angles of deviation = R.14 degrs. minus (1/4 of 4 degrs. 40 mins.)</td>
</tr>
<tr>
<td>Elevation = All 1,100 yards</td>
<td>No. 1 = R.14 degrs. minus 1 deg. 10 mins.</td>
<td>= R.14 degrs. minus 1 deg. 10 mins.</td>
</tr>
<tr>
<td></td>
<td>= R.12 degrs. 30 mins.</td>
<td>= R.12 degrs. 30 mins.</td>
</tr>
<tr>
<td>No. 2 = R.14 degrs. minus (1/4 of 4 degrs. 40 mins.) plus 20 yards at 1,100 yards</td>
<td>= R.14 degrs. minus 3 degrs. 30 mins. plus 1 deg. 4 mins.</td>
<td>= R.11 degrs. 34 mins.</td>
</tr>
<tr>
<td></td>
<td>= R.11 degrs. 34 mins.</td>
<td>= R.11 degrs. 34 mins.</td>
</tr>
<tr>
<td>Data obtained.</td>
<td>Recorded on chart.</td>
<td>Taps = (1/4 of 4 degrs. 40 mins.) plus 15 mins. (overlap).</td>
</tr>
</tbody>
</table>

No. 2 Task. (Oblique target wider than gun frontage.)

Ranges: R. end 1,700 yards
L. end 1,600 yards

Elevation: Either.

<table>
<thead>
<tr>
<th>Range</th>
<th>Data obtained</th>
<th>Recorded on chart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,650 yards</td>
<td>No. 1 = R.1 deg. 10 mins. plus 15 mins.</td>
<td>No. 1 = R.1 deg. 10 mins. plus 15 mins.</td>
</tr>
<tr>
<td></td>
<td>= R.1 deg. 25 mins.</td>
<td>= R.1 deg. 25 mins.</td>
</tr>
</tbody>
</table>

Vickers MG Collection & Research Association - www.vickersmg.org.uk
Angle of switch from pivot gun = L.3 degrs.
Width of target: 2 degrs. 45 mins.

Or
If it has been decided to use QA to point laid on, i.e., the way in from each end of the target.
No. 1—2 degrs. 30 mins.
No. 2—2 degrs. 30 mins.
Lifts: Either
All down 50 yards
All up 100 yards

Or
All down 10 mins.
All up 15 mins.

All down 10 mins. [where 10 mins. is taken as a standard lift per 50 yards.
All up 20 mins.

Angles of deviation:
No. 1 = L.3 degrs. plus (1/2 of 2 degrs. 45 mins.)

= L.3 degrs. 41 mins.
= L.3 degrs. 40 mins.

No. 2 = L.3 degrs. plus (1/2 of 2 degrs. 45 mins.)

= L.3 degrs. 41 mins.
= L.3 degrs. 40 mins.

Taps = (1/2 of 2 degrs. 45 mins.) plus 15 mins.
(overlap).

= 41 mins. plus 15 mins.
= 56 mins.
= R. and L. 4 taps.

No. 3 Task. (Target of less width than gun frontage.)

Data obtained.
Range 1,600 yards
A. of S.: 8 mins.
Angle of switch from pivot gun: L.6 degrs. 30 mins.
(to centre of target)
Width of target: 25 mins

Recorded on chart.
Elevation: All 1,600 yards
A. of S.: 10 mins.
Lifts: All down 50 yards
All up 100 yards

Angles of deviation:
No. 1 = L.6 degrs. 30 mins. minus (1/2 of 20 yards at 1,600 yards)

= L.6 degrs. 30 mins. minus 22 mins.
= L.6 degrs. 10 mins.

No. 2 = The same, L.6 degrs. 10 mins.
Taps = (1/2 width of gun frontage) plus 15 mins. (overlap)

= 43 mins.
= 2 mins.
= 22 mins. plus 15 mins.
= 37 mins.
= R. and L. 2 taps.

Example II.—Platoon chart for No. 4 gun

Data obtained.
Range: 1,950 yards
A. of S. plus 40 mins.
Angle of switch from pivot gun: L.12 degrs. 30 mins.
Width of target: 3 degrs. 30 mins.

Recorded on chart.
Elevation: 1,950 yards.
A. of S.: Plus 40 mins.
Lifts: All down 50 yards
All up 100 yards.

Angles of deviation:
L.12 degrs. 30 mins. plus 2 degrs. 10 mins.
(Angle of distribution) = 14 degrs 40 mins.
Taps: (1/2 of 3 degrs. 30 mins.) = 35 mins.
= R and L. 2 taps.
LESSON 149.—BARRAGES

Instructor's Notes

Stores: Blackboard or sand-table, map (1:50,000 or larger scale), protractor, range tables.

1. Explain.

(a) When a large number of guns and sufficient ammunition are available, machine guns may be used for barrage fire. Machine-gun barrages will usually be required as part of a fire plan which includes the fire of artillery and, possibly, mortars.

Except where the ground is favourable for safety reasons overhead fire must be at least 400 yards ahead of the advancing troops. Unlike artillery support, when the infantry can see the fall of the shells, the infantry have no means of knowing how close they are to a machine gun barrage.

(b) There are two types of barrage:

(i) Creeping barrages. In which the barrage moves forward in accordance with a prearranged programme at a rate at which the attacking troops can keep up with it. The line on which the barrage opens, and the lifts, are worked out having regard to safety considerations.

(ii) Standing barrage. Put down on a definite line and remaining there as long as required or safety considerations permit. Standing barrages may be used either in support of an attack, or, in the form of a box barrage, in order to isolate any area of ground to prevent reinforcement or counter-attack during a raid or small attack operations.

(c) Barrages can be either frontal, oblique, or flanking. The frontal creeping barrage is easier to calculate and control. The flanking barrage may be put down much closer to our own troops than a frontal barrage, but it will seldom be possible to find gun positions which give complete enfilade.

Oblique barrages have the advantages and disadvantages of the frontal and flanking types according to the degree of obliquity.

(d) The intensity of a barrage depends on the range and the slope of the ground in relation to the angle of descent of the bullet. As a rough guide, for a frontal barrage, at least one gun per 30 yards of front will be needed.

(e) Standing flanking barrages should consist of two parallel lines of fire about 60 yards apart.

(f) The preparations for a barrage sheet are similar to those described in Sec. 28, paras. 1-3.

2. Practice. Give examples on the blackboard, in map or sand-table of various types of barrages, and discuss the number and siting of guns and the preparation of fire control charts.
SECTION 29 — EXAMPLES OF INDIRECT FIRE ORDERS

1. Point target, or target not wider than gun frontage.

Fire controller.

"All — One six hundred plus two five minutes ".

"Load ".

"Right and left—One tap ".

"Rapid—Fire ".

"Stop.

All—Down fifty.

Go on ".

"Stop.

All—Up one hundred.

Go on ".

Non-commissioned officer in charge of gun position.

"Zero lines ".

"No. 4—Left eight seven degrees two ome minutes.

No. 3—Left eight four degrees.

No. 2—Left eight two degrees five ome minutes ".

Reports: "Guns on zero lines ".

Reports: "Guns ready to load ".

2. Target with width.

Fire controller.

"All — One four hundred plus five five minutes ".

"Load ".

"Distribution:

No. 1—Nil.

No. 2—Left one degree two ome minutes.

No. 3—Left two degrees five ome minutes.

No. 4—Left four degrees one ome minutes ".

"Right and left—Four taps ".

"Wind—Right two ome minutes ".

"Fire ".

Non-commissioned officer in charge of gun position.

"Zero lines ".

All—Left seven eight degrees three ome minutes ".

Reports: "Guns on zero lines ".

Reports: "Guns ready to load ".

3. Target with width having a different angle of sight to each end.

Range obtained by range-finder: 1,750 yds.

Angles of sight:

\[\frac{1}{2} \text{ way in from right end : Plus 30 mins.} \]

\[\frac{1}{4} \text{ way in from left end : nil.} \]

Angular width of target: 1 deg, 20 mins.

Fire controller.

"Nos. 1 and 2—One seven fifty plus three ome minutes." No. 3 and 4—One seven fifty." Reports: "Guns on zero lines ".

Reports: "Guns ready to load ".

Non-commissioned officer in charge of gun position.

"Zero lines.

All—Left eight two degrees ".

Reports: "Guns ready to load ".

4. Oblique target with a different range to each end.

Range to right end: 1,550 yds. Range to left end: 1,400 yds.; both ranges obtained by range-finder.

Angles of sight:

\[\frac{1}{4} \text{ way in from right end : Plus 20 mins.} \]

\[\frac{1}{4} \text{ way in from left end : Minus 10 mins.} \]

Angular width of target: 3 degs. 10 mins. Wind: 30 mph 9 o'clock.

Gun angle method. No. 4 gun pivot gun.

Fire controller.

"Nos. 1 and 2—One five hundred plus two ome minutes.

Nos. 3 and 4—One four fifty minus one ome minutes ".

or

"Nos. 1 and 2—Two degrees two ome minutes.

Nos. 3 and 4—One degree four five minutes ".

"Load ".

Reports: "Guns on zero lines ".

Reports: "Guns ready to load ".
Fire controller.

Non-commissioned officer in charge of gun position.

Distribution:
- "No. 4—Nil.
- No. 3—Right three o'five minutes.
- No. 2—Right one degree.
- No. 1—Right one degree three o'five minutes.
- "Right and left two taps."
- "Wind—Left one degree."
- "Fire."
- "Stop."
- All—Down fifty (or five minutes). Go on."
- "Stop."
- All—Up one hundred (or one five minutes). Go on."

5. Area target.

Range to near end: 1,650 yds. Range to far end: 1,750 yds.; both ranges obtained by range-finder.

Angles of sight: Near end, minus 16 mins.
- Far end, plus 8 mins.

Angular width of target: 4 degrees.
- Wind: nil.
- D.A.P. and post method. No. 1 gun pivot gun.

- "All one seven hundred minus five minutes."
- "Load."
- "Distribution:"
 - No. 1—Nil.
 - No. 2—Left five o'five minutes.
 - No. 3—Left one degree four o'five minutes.
 - No. 4—Left two degrees three o'five minutes.
 - "Right and left three taps."
 - "Fire."
- "Stop."
- All—Down fifty. Go on."
- "Stop."
- All—Up one hundred. Go on."

"Zero lines."
- All—Left five six degrees three o'five minutes.
- Reports: "Guns on zero lines."
- "Stop."
- All—Up two hundred. Go on."
- "Stop."
- All—Down two fifty. Go on."
- "Stop."
- All—Up three hundred. Go on."
- "Stop."
- All—Down three fifty. Go on."
- "Stop."
- All—Up four hundred. Go on."

SECTION 30.—FLANKING AND OVERHEAD FIRE

1. The provision of supporting fire to our own troops is the main tactical role of the machine gun. The safety of the troops to whom such support is being given must be the first consideration of the machine gun commander.

2. Supporting fire can be provided either from the flank of a line of advance or defended locality, or by overhead fire; that is, when the trajectory passes over the heads of our own troops. Where possible, flanking fire positions should be sought; not only because of the greater fire effect generally obtained from the beaten zone in enfilade, but also because fire from a flank can be put down with safety considerably closer to the troops being supported than can overhead fire. Before the occupation of a position for the purpose of overhead fire it is necessary to determine that such fire will be safe to our own troops. This increases the time required for the guns to be brought into action.

3. In order that the safety of the troops may be ensured, it is essential that their position or movements should be observed by or known to the fire controller.

In defence, such observation or knowledge should not present any serious difficulty. In attack, the possibility of observing the movements of our own troops will depend on various factors, e.g., the nature of the ground (whether open, close, flat or hilly), obstructions to the field of view, bad visibility, smoke screen, etc. Since such observations can hardly be assured, it is evident that considerable caution will have to be exercised.
4. Apart from the above considerations, the machine gun, by reason of its stable mounting and the close grouping of its fire, is well suited to carry out flanking and overhead fire with safety to our own troops.

5. Flanking and overhead fire are governed by definite rules, which are contained in the following sections.

These rules take into account unarmoured troops in the open. If our own troops are dug in, common sense will indicate to what extent the rules may be relaxed. For instance, it may be safe to fire just over the top of a deep trench 200 yards in front of the gun, but at longer ranges the risk of dropping bullets at a steep angle of descent into our own trenches must not be taken.

Tanks are immune from machine gun fire, and fire may be put down close ahead of, or even among, friendly tanks.

6. In solving any problem in connection with the safety of our own troops, the worst possible situation must be taken as a basis for applying the rule.

7. On occasions it may be unsafe to engage a target if the fire control rules are compiled with. It may, however, be possible to fire on the target by modifying the fire control rules, by reducing the number either of taps or of elevations.

LESSON 150.—FLANKING FIRE

Instructor's Notes.

Stores: Blackboard, slide rule, field glasses and range tables.

Method of Instruction: The application of the rules will be explained on the blackboard, and the class will then practice on the ground.

1. **Explain rules for flanking fire.**

 (a) The position of own troops must be known, or they must be working to a timed programme.

 (b) Barrels must not point, nor bullets fall within three degrees of own troops.

 (c) The three-degree limit extends to a point 100 yards beyond the top bullet of the beaten zone at the highest elevation.

 (d) Arrangements must be made to prevent tapping within the three-degree limit.

 (e) Careful allowance must be made for wind.

2. **Explanation of rules.**

 Rule (a).—This entails the observation of own troops during the whole of their advance, or the application of a rigid timed programme based on a rate of advance which must not be exceeded by the infantry companies concerned.

 Rule (b).

Figure 34

- **Attack.**
 - B is the target.
 - G is the gun line.

- **Defence.**
 - A is a rifle locality.
 - B is a belt of fire protecting it.
 - G is the gun line.

Attack: GB is the line of fire to engage a target. If our own troops are advancing in the direction shown, as soon as they reach the line GC fire must cease.

Defence: A represents the flank of our own troops and GB the line of fire. For safety, the angle AGB must be three degrees, or greater.

The lateral allowance of three degrees covers:

(i) Minor inaccuracies in aiming, tapping and the estimation of the strength of side winds.

(ii) Movement of the tripod settling in during first burst of fire, etc.

(iii) Half the width of the beaten zone.

Rule (c).

To calculate the extent of the danger area, add 300 yards plus half the length of the beaten zone at the highest elevation to the latter range.

i.e. Range to target 1,500 yards (by range-finder).

The combined sight rule calls for three elevations.

Thus, the highest elevation is 1,550 yards.

The length of beaten zone at 1,550 yards is 100 yards.

Distance of point to which the three-degree limit extends is 1,550 yards + 30 yards + 300 yards = 1,900 yards.

Thus, it can be seen that in Figure 35, in both attack and defence, own troops are safe in the areas A and B.
(iii) Head or rear winds—attack and defence.—The extent of the danger area for own troops will be governed by the effect of head or rear winds.

Head wind.—In order to cause the bullets to fall in the correct position, the elevation on the gun must be increased to overcome the effect of the wind. This must be taken into account when considering the extent of the danger area.

Rear wind.—In order to overcome the effect of the wind the elevation on the gun must be decreased. In consequence of this, rear winds will not be considered when calculating the extent of the danger area.

It should be noted that these allowances should be measured either by slide rule, dial sight, direction dial, gratulated binoculars or director. In no circumstances should hand angles be used.

LESSON 151.—OVERHEAD FIRE.

Instructor's Notes

Stores : Blackboard, gun, tripod, dial sight, director, range table and field glasses.

Method of Instruction: The theory contained in this lesson will be explained and the class will work out simple problems on the safety angle. It will be made clear that these problems are in practice solved on the slide rule. (Lesson 152.)

1. Explain rules for overhead fire:—

(a) The position of own troops must be known, or they must be working to a timed programme.

(b) Barrels and tripods must be in good condition.

(c) The range to own troops must not be more than 3,800 yards.

(d) The range to own troops must be found by:—

Range-finder, or map of not less than 1/50,000, up to 2,800 yards.

Map only, from 2,850 to 3,800 yards.

(e) The centre shot of the cone of fire must pass over the heads of own troops by at least the minimum clearance.

(f) The lowest tangent angle necessary to engage the target must be equal to or greater than the safety angle to own troops, unless the ground angle will account for the difference between the two angles.

(g) Careful allowance must be made for wind.

2. Clearance and minimum clearances.

"Clearance" at any point is the vertical height of the centre shot of the cone above that point. In accordance with rule (c) in para. 1, above, the minimum clearance for every range to own troops has been calculated, and is laid down in the range table. In these calculations allowances have been made with a sufficient safety margin on account of:—

(i) Permissible errors in range-taking.

(ii) Normal climatic variations.

(iii) Errors in sighting of guns and dial sight adjustment.

(iv) Movement of the tripod in settling in during the first burst of fire, etc.

(v) The depth of the lowest shot of the cone below the centre shot.
(b) Influence of ground.

In Figure 36 the cone at Z is clearing troops at Z on account of the natural curve of the trajectory only.

In Figure 37 the cone at C is clearing troops at Z owing to two distinct factors:
(i) The natural curve of the trajectory above its line of sight.
(ii) The fact that the troops at Z are below the line of sight to the target.

The problem to be solved in Figures 36 and 37, before overhead fire can be opened, is whether the cone will clear the point Z by the minimum safety clearance.

In Figure 38 it is evident that there must be a near and far limit of safety. Thus, if own troops are advancing through the gun position they are safe between these two limits.

3. The safety angle.
The minimum clearance can also be expressed as an angle. Consider Figure 34.
G is the gun.
GX the axis of the bore.
SZ the minimum clearance for our troops at Z.

Theoretically, there is only one position of the axis of the bore which will cause the centre shot to pass exactly through S. Suppose GX to be this position; any lower position would cause the trajectory to pass below S, and the necessary minimum clearance would not be given.

The angle XGZ is known as the safety angle for the range GZ, and is defined as the minimum angle which must be included between the axis of the bore and the line of sight to our own troops.

It can easily be calculated, as it can be seen that it is made up of the tangent angle for the range to our own troops (XGZ) and the amount subtended by the minimum clearance at that range (SZ). Safety angles are calculated for each range, and are laid down in the range table.

4. Application of the safety angle.—In order to decide whether our troops in a particular position are safe when a target is to be engaged, it is necessary to compare the safety angle for the range to our own troops with the tangent angle for the range to the target. If combined sights are used, the tangent angle for the lowest range must be compared. The procedure is governed by Rule (vi), which may be explained in detail as follows:

(a) If the safety angle required at the range to our own troops is equal to or less than the lowest tangent angle to be employed, our troops are safe.

(b) If the safety angle required is greater than the tangent angle, troops are not safe unless they are below the line of sight to the target to the extent of the difference between these two angles.

Example:
Range by range-finder to target, 1,700 yards.
Range by range-finder to our own troops, 1,400 yards.
Combined sights must be used, therefore work from lowest elevation, i.e., 1,450.

Safety angle required for...
Tangent angle for...
Difference...

1,400 = 2 degs. 51 mins.
1,600 = 2 degs. 21 mins.
= 30 mins.

Therefore, our troops must be 30 minutes below the line of sight to the target to be safe.
The angle which our troops must be below the line of sight to the target to be safe can be measured from the gun position by means of the graticules in field-glasses, or by any other accurate method of measuring vertical angles. This angle is known as the ground angle.

In indirect fire, for our troops to be safe, the safety angle for the range to our troops plus or minus the angle of sight to our troops must be equal to or less than the lowest quadrant elevation used to engage the target.

5. If it is required to fire as closely as possible over the heads of our troops (see Lesson 154), find the range to our troops. Opposite this range in the range table find the "Equivalent range" in column 16. Set the tangent sight to this equivalent range and lay on own troops.

6. Theory of the rule for comparison of the safety angle with the tangent angle.

In Figure 40, G is the gun, Z our own troops, SQ the minimum clearance for the range QZ and T is the target.

Now if to hit T the axis of the bore were in a position GX, and the centre shot passes through S, XGZ, the safety angle, is equal to the tangent angle to hit T, and our own troops are safe.

![Figure 40](image1.png)

If to hit T, the position of the axis of the bore were in a position GX, the trajectory of the centre shot would pass above S and our troops are safe.

Hence, we get the rule that if the safety angle (XGZ) is equal to, or less than, the tangent angle (XGZ) our troops are safe provided they are not above the line of sight to the target.

If, however, to hit T the position of the axis of the bore were GX, the trajectory would pass below S, and our troops at Z are not safe. Here the safety angle (XGZ) is greater than the tangent angle (XGZ).

We have only considered the case where our troops are on the line of sight to the target. The ground will often be favourable, and our troops (Z) may be below the line GT.

In Figure 41, the ground is favourable, and our troops, instead of being at Z are at Z1; we can therefore lower the axis of the bore from GX to GX, where XZGZ is the safety angle for the range GZ, or (GZ) and XGZ is the tangent angle to hit T.

![Figure 41](image2.png)

LESSON 152.—USE OF THE SLIDE RULE IN OVERHEAD FIRE

Instructor's Notes

Stores: Slide rules and field glasses.

Method of Instruction: The various methods of applying the slide rule will be explained indoors, and the class will then practice on the ground, the instructor setting practical problems.

1. Explain the purpose of the slide rule.

In order to save the labour entailed in comparing the tangent angles and safety angles, the Machine-Gunner's Slide Rule is provided. (Lesson 40.)

To use the slide rule in the case mentioned in the example in Lesson 151, para. 4, set 1,400 yards on the "Range to Own Troops" scale against yards on the "Range to Target" scale. This will cause the slide to project above the top of the rule.

Hold the rule vertically at the full length of the string, bringing the shoulders at the top of the rule Y, in Figure 42, along the line of our own troops nearest the target.

If the target can be seen above the top of the slide X, our troops are safe.

In effect, the height XY subtends at 24 inches from the eye, the amount our troops must be below the line of sight to the target to be safe.

On the right side of the rule will be found a scale on which this amount is indicated when the slide rule is set.

7. Rear and head winds will affect overhead safety in the following manner:

(a) Attack.

(i) Rear winds.—In order that bullets will fall on the target, the elevation on the gun must be decreased to overcome the effect of the wind. This must be taken into account when considering the position of the far limit of safety.

(ii) Head winds.—As it is necessary to increase the elevation on the gun to overcome this type of wind, no adjustment to the safety calculation will be required.

(b) Defence.—As in these circumstances own troops are stationary, overhead protective fire is laid down in front of them by employing the equivalent range. If there is a head wind, this range will have to be increased. No allowance will be made in the case of a rear wind.
2. The practical use of the slide rule.—The slide rule is employed in the following cases:

(a) In the reconnaissance for a position from which to engage a definite target over the heads of our troops who are stationary, to determine whether fire can be opened with safety.

The slide rule is set and used as above.

(b) To determine how near to a target our advancing troops can be supported by overhead fire with safety.

The nearest position of our troops to the target is known as the "far limit of safety" for that particular target.

The problem is solved by trial and error, using the slide rule as follows:

The fire controller picks up a point (3) short of the target T (Figure 43) up to which he estimates our troops could advance with safety. He orders his rangefinder to take the range to this point and obtains the range to the target. He sets the slide rule as in para. 1, above, taking the range to B as the range to our own troops. If the projection XY (Figure 42) does not fit between the lines of sight B and T, our fire must cease at some point nearer the gun than B. If it fits in with some amount to spare, then fire can be continued until our troops reach some point closer to T.

Another point is then selected for trial either nearer or farther away from B, and the procedure repeated until the far limit of safety is found by a process of elimination.

(c) To determine, when our troops are withdrawing, the line they must clear before fire can be opened on the ground evacuated by them. Work out the far limit of safety as in (b) above, taking the ground on which fire is eventually required as the target.

(d) To determine, in the case of our troops advancing along the line of fire through the gun position, what line they must clear before fire can be opened.

This position is known as the "near limit of safety" for the particular target concerned.

Using the graduations positioned to the right of the lower ranges on the "range to troops" scale, proceed as in (b) above.

In the following cases the slide rule is set with the slide flush with the shoulders at the top of the rule. In this position, for any range to our troops, the "equivalent range" can be read on the "range to target" scale.

(e) To determine the near and far limits of safety when our troops are on the line of sight to the target.

Opposite the range to the target on the "range to target" scale read the graduations on both the scales on the slide. These graduations indicate the ranges to the near and the far limits of safety.

The actual positions on the ground are found by trial and error.

(f) When our troops are stationary, to place overhead fire as close to them as possible.

Opposite the range to our own troops on the "range to troops" scale read the equivalent range on the "range to target" scale. Using this equivalent range and the position of our own troops as a point of aim, our troops will be safe.

(g) In the case when our troops, advancing towards the target, have reached the far limit of safety, to lift the fire so that overhead supporting fire can be continued until they reach the original target.
On the "range to troops" scale note the position of the range which has been in use for engaging the target (this must have been obtained by range-finder or 1/50,000 map). Read opposite this the equivalent range on the "range to target" scale. Using this equivalent range on the sight and the target as a point of aim, our troops will be safe when they reach the position of the target.

(i) Whenever observation of strike calls for a range correction, the controller must reconsider the safety problem.

(ii) The slide rule may also be used for solving safety problems in indirect fire.

SECTION 31.—FIXED LINES

1. Machine guns must, especially in defence, make preparations to fire on certain pre-arranged areas should the OS be sent up during the hours of darkness, or in the event of the arc of fire becoming obscured. This pre-arranged fire is referred to as firing on fixed lines.

2. Fixed lines may take any of the following forms:
 (a) A belt of fire (see Figure 44, Lesson 153). In this case it will usually be necessary to give different elevations to each gun so as to make the belt of fire as long as possible. The elevations will be decided on by consulting the range tables, so as to ensure that the beaten zones will overlap.

 As a guide, for ranges up to and including 1,000 yards an interval of 100 yards should be used. For ranges exceeding this a 50-yard interval will be more suitable.

 On occasions it may be necessary to lay down two belts of fire, e.g., when there are two comparatively important areas at short ranges, which it is desirable should be covered by fixed lines. (See Figure 45.)

 (b) At times it will be necessary to lay a fixed line on a bridge, cross-roads, narrow valley or some other place where the enemy is likely to concentrate. In such circumstances it may be necessary to tap right and left in order to cover the whole width of the area to be engaged to cover possible errors in direction.

 (c) There may be occasions when it is desired to place down a mat of fire over the heads of own troops (see Lesson 154). In this case the guns are laid and arrangements made to tap right and left so as to form a mat of fire, the width being the amount of frontage with which the guns can satisfactorily deal, e.g., not more than 50 yards per gun.

 (d) When firing on fixed lines the combined sight rule should not be used.

LESSON 153.—LAYING A FIXED LINE (FLANKING FIRE) AS NEAR AS IS SAFE TO A DEFENDED LOCALITY

Instructor's Notes

Stores: Gun, tripod, belt, liners, dummy cartridges, dial sight, aiming post.

Explain and demonstrate.

1. Calculate the safety allowance required, e.g., 3 degrees plus any necessary addition for side wind. This addition must be frequently checked to keep up to date with changes in the strength and direction of the wind.

2. Set this angle on the deflection drum and, using the collimator, lay on the defended locality.

3. By elevating or depressing the gun, pick up the limit of flanking safety.

4. Select a point either on or outside this line in the area where the platoon commander has ordered the fixed line to fall.

5. Obtain the range to this point. Decide on the elevation to be given to each gun so that the fixed line shall be as long as possible without there being gaps between the beaten zones.

6. When this has been done, lay the gun on the selected point with the necessary range on the tangent sight.

7. Set the dial on the tripod at zero.

8. Put out the aiming post. Using the deflection drum, align the collimator on it. Record the angle measured, and leave it on the dial sight.

9. Record the elevation now on the gun by means of the dial sight.

Note:—When laying the above type of fixed line neither gun will tap right or left.

LESSON 154.—LAYING A FIXED LINE (OVERHEAD FIRE) AS NEAR AS IS SAFE TO A DEFENDED LOCALITY: EACH GUN COVERING 50 YARDS OF FRONT

Instructor's Notes

Stores: As for Lesson 153 and, in addition, slide rule and range table.

1. Obtain the range by range-finder to the defended locality.

2. From the slide rule or range table ascertain the minimum range which will ensure the safety of the troops in the defended locality (i.e., the equivalent range) plus any necessary addition for wind.

3. Convert 25 yards to an angle at the latter range.

4. Set this angle on the deflection drum of No. 1 gun—Right. No. 2 gun—Left.

5. Lay both guns by means of the collimator on the centre of the defended locality.

6. Set the range obtained in (2) above on the tangent sight of both guns and lay them for elevation on a line with the defended locality.

7. Relay both guns on the defended locality. Set the dials on the tripod at zero.

8. Put out the aiming post. Using the deflection drum, align the collimator on it. Record the angle measured and leave it on the dial sight.

9. Record the elevation on the guns by means of the dial sight.

Note:—No lifts will be given.

It may be necessary to consider also flanking safety for one or more defended localities.
LESSON 155.—LAYING A FIXED LINE WHEN NO DAYLIGHT RECONNAISSANCE HAS BEEN CARRIED OUT.

Instructor's Notes

Stores: As for Lesson 153 and, in addition, torches and aiming lamp.

1. Explain and demonstrate.

It may sometimes be required to lay a fixed line to protect a locality when no daylight reconnaissance has been possible. This may be carried out by any of the following methods dependent on circumstances:

Method 1.

When no safety is involved and a light can be shown from the position at which the fire is required to fall, the following procedure will be adopted:

(a) Shine a light from the target area.
(b) Obtain the range to the light by range-finder.
(c) Lay the gun on the light, using the tangent sight set at the range obtained.
(d) Record the QF and the angle between the line of fire and the aiming post as above.
(e) Half load and press the thumbpiece.

Method 2.

When flanking safety is involved and a light can be shown from the own troops’ defended locality, then the following procedure may be adopted:

(a) Shine a light towards the gun position from the locality to be protected.
(b) Obtain the range to the light by range-finder.
(c) Using the tangent sight set at the range obtained, lay the gun on the light.
(d) Set the deflection drum of the dial sight at the necessary safety allowance and tap the gun until the collimator is laid on to the light.
(e) Record the elevation on the guns by means of the dial sight.
(f) Set the dial of the tripod at zero, put out the aiming lamp and, using the deflection drum, align the collimator on to it.
(g) Note down the elevation and angle measured.
(h) Half load and press the thumbpiece.

Method 3.

In the case where flanking safety is involved, and it is not possible to shine a light from the defended locality, the following procedure will be adopted:

This procedure is shown in detail in Lessons 87, 146 and 147. As safety is involved, a flanking safety allowance of at least 15 degrees should be used to allow for:

(a) Errors in pin-pointing the gun positions and own troops on the map and ground.
(b) Errors in the occupation of these exact positions by night.
(c) Errors in laying out line by compass at night.

If Method 3 has been employed, it is advisable for safety reasons to confirm direction as soon as possible by either of the other methods. This will be the responsibility of the section commander.